京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据让城市管理有“据”可循_数据分析师
对于大数据人们已经耳熟能详,如今在利益格局多元化、社会需求多样化的公共决策与公共服务领域,大数据也能一显身手。请关注——大数据让城市管理有“据”可循
随着中国进入大数据时代后,与其相关的各种话题就不绝于耳:电影《小时代》说会根据大数据选角和删减戏份;百度称靠数据挖掘押中了今年的高考作文题;目前正如火如荼的世界杯中大数据也没有缺席——德银甚至借助大数据计算出了一份夺冠概率表。
据外电报道,德银根据各个球队的FIFA排名、历史战绩、球员构成和赌球赔率等因素,建立了量化分析模型,并根据复杂计算得到一份夺冠概率表格。其中巴西名列第一,紧随其后的是德国、西班牙、法国。然后再根据某些假设,得出最终的冠军得主。
对于看似万能的大数据,如今在利益格局多元化、社会需求多样化的公共决策与公共服务领域,是否也能一显身手呢?
大数据为政策制定导航
今年年初,备受关注的“单独两孩”政策在各地落地后,国家卫生和计划生育委员会宣传司司长、新闻发言人毛群安曾透露,为这项政策的出台,相关机构和部门做了将近10年的研究,对人口政策采取什么样的调整都进行过数据模拟。
毛群安所提到的数据模拟其实就是大数据决策的一种。其后提供数据分析与支持的是一个名为“国家人口宏观管理与决策信息系统(PADIS)”的项目。PADIS系统依托国家电子政务网络平台,整合了来自公安、统计、民政、卫生、财税、教育、劳动与社会保障、资源、环境、农业、建设等各个部门的数据,能在计算机中建立一个虚拟社区。在这个社会模型中,从新生儿的出生、儿童的就学,到大学生毕业后的就业和成年人的婚姻生育状况等与人口相关的关键状态都会有所体现。只需将具体的政策输入计算机,就能看到几年、几十年、甚至上百年后,这些政策所产生的影响。
大数据同样可以被用于城市交通规划。PADIS还曾对某个城市的交通拥堵问题进行过预测分析。与认为应该限制人口和机动车数量,加快发展公共交通的传统观点不同,PADIS的预测结果显示,人口集中居住区域与经济中心的严重偏离才是导致市民出勤需求上升、交通恶化的根本原因,单纯增加公共交通设施、控人控车只能扬汤止沸。为此,PADIS开出的“药方”是改善城市规划管理,让城市向多中心方向发展。
除了能帮助政府调整计生政策、规划交通外,这一系统还能凭借其拥有的海量数据和强大的模拟预测能力,对延迟退休、养老金缺口、环境治理、房价上涨等热点问题提出自己的“真知灼见”,范围足以涵盖我们生活的方方面面。
大数据只能辅助决策
大数据的魅力在于能够通过对海量数据的分析,以一种前所未有的方式获得具有巨大价值的产品或深刻的洞见。那么是不是意味着可以完全相信计算机,让数据和软件来帮助我们做决定?
答案当然是否定的。PADIS系统项目技术总监、神州数码信息服务股份有限公司大数据专家史文钊认为,现在没有也不应该制造出一个自动决策系统。他说,大数据只能辅助决策而不能代替决策。总结这些年的经验,最好的系统应当是人和计算机的完美结合。大数据应用十分强大而且还会更加强大,它能实现数据挖掘分析、政策模拟、指标预警等多种功能,但它仍然只是一个辅助决策系统。就如同人口预测分析一样,面对需要解决的问题,大数据只能把可供选择的选项,和它们可能带来的影响提供给决策者,最终采用哪一个、如何执行、力度多大还得由决策者结合各方面的因素综合考量。
史文钊说:“以‘单独二孩’政策为例,虽然在政策上只是前进了一小步,但对政府科学决策而言,完全称得上是一大步。这体现出了政府在管理理念和治理模式上的转变。”
挖掘大数据的富矿
“互联网女皇”玛丽·艾克在《2014年互联网趋势报告》中专门将大数据提了出来,认为在2014年大数据将更加实用,比以往任何时候都更加贴近普通人的生活。从2014年开始一些依靠解读数据提供解决方案的新型服务开始出现,大数据解决大问题的趋势也将显现。同时她还发现在现有的通用数据中有34%的信息具备研究价值,但其中只有7%的数据被做了标记,被分析过的只有1%。数据获取固然重要,但缺乏分析的数据毫无意义。
因此,可以说大数据的真正价值在于挖掘和分析。“大数据的大不仅是数量的大,更是价值的大”,史文钊说,“大数据真正的价值不是海量的数据简单集合,而是找到这些数据之间的关联,发现它们背后的规律,为解决实际问题服务。如同矿藏一样,数据也有贫矿富矿之分。在目前的情况下,尤其是在智慧城市建设中,我们需要注重的应该是如何盘活已有数据存量,用好大数据增量,来提升城市公共服务能力和管理决策水平。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09