
大数据让城市管理有“据”可循_数据分析师
对于大数据人们已经耳熟能详,如今在利益格局多元化、社会需求多样化的公共决策与公共服务领域,大数据也能一显身手。请关注——大数据让城市管理有“据”可循
随着中国进入大数据时代后,与其相关的各种话题就不绝于耳:电影《小时代》说会根据大数据选角和删减戏份;百度称靠数据挖掘押中了今年的高考作文题;目前正如火如荼的世界杯中大数据也没有缺席——德银甚至借助大数据计算出了一份夺冠概率表。
据外电报道,德银根据各个球队的FIFA排名、历史战绩、球员构成和赌球赔率等因素,建立了量化分析模型,并根据复杂计算得到一份夺冠概率表格。其中巴西名列第一,紧随其后的是德国、西班牙、法国。然后再根据某些假设,得出最终的冠军得主。
对于看似万能的大数据,如今在利益格局多元化、社会需求多样化的公共决策与公共服务领域,是否也能一显身手呢?
大数据为政策制定导航
今年年初,备受关注的“单独两孩”政策在各地落地后,国家卫生和计划生育委员会宣传司司长、新闻发言人毛群安曾透露,为这项政策的出台,相关机构和部门做了将近10年的研究,对人口政策采取什么样的调整都进行过数据模拟。
毛群安所提到的数据模拟其实就是大数据决策的一种。其后提供数据分析与支持的是一个名为“国家人口宏观管理与决策信息系统(PADIS)”的项目。PADIS系统依托国家电子政务网络平台,整合了来自公安、统计、民政、卫生、财税、教育、劳动与社会保障、资源、环境、农业、建设等各个部门的数据,能在计算机中建立一个虚拟社区。在这个社会模型中,从新生儿的出生、儿童的就学,到大学生毕业后的就业和成年人的婚姻生育状况等与人口相关的关键状态都会有所体现。只需将具体的政策输入计算机,就能看到几年、几十年、甚至上百年后,这些政策所产生的影响。
大数据同样可以被用于城市交通规划。PADIS还曾对某个城市的交通拥堵问题进行过预测分析。与认为应该限制人口和机动车数量,加快发展公共交通的传统观点不同,PADIS的预测结果显示,人口集中居住区域与经济中心的严重偏离才是导致市民出勤需求上升、交通恶化的根本原因,单纯增加公共交通设施、控人控车只能扬汤止沸。为此,PADIS开出的“药方”是改善城市规划管理,让城市向多中心方向发展。
除了能帮助政府调整计生政策、规划交通外,这一系统还能凭借其拥有的海量数据和强大的模拟预测能力,对延迟退休、养老金缺口、环境治理、房价上涨等热点问题提出自己的“真知灼见”,范围足以涵盖我们生活的方方面面。
大数据只能辅助决策
大数据的魅力在于能够通过对海量数据的分析,以一种前所未有的方式获得具有巨大价值的产品或深刻的洞见。那么是不是意味着可以完全相信计算机,让数据和软件来帮助我们做决定?
答案当然是否定的。PADIS系统项目技术总监、神州数码信息服务股份有限公司大数据专家史文钊认为,现在没有也不应该制造出一个自动决策系统。他说,大数据只能辅助决策而不能代替决策。总结这些年的经验,最好的系统应当是人和计算机的完美结合。大数据应用十分强大而且还会更加强大,它能实现数据挖掘分析、政策模拟、指标预警等多种功能,但它仍然只是一个辅助决策系统。就如同人口预测分析一样,面对需要解决的问题,大数据只能把可供选择的选项,和它们可能带来的影响提供给决策者,最终采用哪一个、如何执行、力度多大还得由决策者结合各方面的因素综合考量。
史文钊说:“以‘单独二孩’政策为例,虽然在政策上只是前进了一小步,但对政府科学决策而言,完全称得上是一大步。这体现出了政府在管理理念和治理模式上的转变。”
挖掘大数据的富矿
“互联网女皇”玛丽·艾克在《2014年互联网趋势报告》中专门将大数据提了出来,认为在2014年大数据将更加实用,比以往任何时候都更加贴近普通人的生活。从2014年开始一些依靠解读数据提供解决方案的新型服务开始出现,大数据解决大问题的趋势也将显现。同时她还发现在现有的通用数据中有34%的信息具备研究价值,但其中只有7%的数据被做了标记,被分析过的只有1%。数据获取固然重要,但缺乏分析的数据毫无意义。
因此,可以说大数据的真正价值在于挖掘和分析。“大数据的大不仅是数量的大,更是价值的大”,史文钊说,“大数据真正的价值不是海量的数据简单集合,而是找到这些数据之间的关联,发现它们背后的规律,为解决实际问题服务。如同矿藏一样,数据也有贫矿富矿之分。在目前的情况下,尤其是在智慧城市建设中,我们需要注重的应该是如何盘活已有数据存量,用好大数据增量,来提升城市公共服务能力和管理决策水平。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16