
橱柜企业引入大数据 个性定制可实现规模生产
在数字化时代,中国制造行业面临着转型,数字化生产推动第三次工业革命的时代即将到来。在不远的将来,借助新材料和信息技术的应用,大多数产品都可经过计算机设计,然后通过3D打印机“打印出来”。一个不限地点、无需工人、真正实现个性定制化的时代即将降临。在这股全球性“信息化大数据”浪潮中,中国定制橱柜行业自然不能落于人后,要积极通过大数据管理带来的变革,将定制带入大众化普及时代。
规模化与个性化矛盾突出
现今普通消费者购买的商品房都不大,对于合理优化和利用住宅空间有迫切的需求,只有定制才能满足。所以,这是一个对全屋定制家具有强烈需求的市场。然而,即使到现在,定制仍与高端、与小规模生产挂钩,尤其是橱柜这类大宗货物。原因在于,在生产环节,传统定制模式生产效率低、材料浪费高,难以量产;在接单环节,定制需要设计师针对消费者个性需求进行设计,人力、时间成本高。上述两个环节因素的制约,导致定制橱柜价格居高不下,规模生产与个性生产成为一对主要矛盾。
导入市场大数据管理系统
对于坚持定制路线的橱柜企业而言,要发展就必须解决个性定制与规模生产的冲突。其解决办法是导入大数据管理系统,一个是生产系统,另一个是销售设计、分析系统。
橱柜企业一般秉承先设计销售、再生产的商业模式。为解决传统设计人力、时间成本高的问题,橱柜企业一方面可对市场上的户型数据进行收集,梳理出最基本的户型。另一方面通过在与消费者沟通时,收集信息,例如房屋朝向、户型、业主身高、颜色喜好与最终选定的方案等,录入信息库。如此一来,当新的消费者进店后,设计师就可很快在已有户型中挑选最贴近的房型,进行微调后开始方案设计。
生产环节效率得大幅提升
而在方案确定后,整体橱柜的每一个部件都会拆分、转化为一个又一个的数字,被传送到云数据库订单中心。用大数据的方式,指挥每一台机器生产。在此模式下,橱柜企业的生产效率得以大大提升,材料利用率提升,出错率大幅降低。在大数据管理的统领下,个性化定制与规模化生产互为补充、共同增长,满足市场对定制橱柜的海量需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04