京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据让小微商户也能成为大力神的儿子
根据IDC和EMC发布的报告,到2020年地球上每个人的数据容储量将达到5TB。这令人感到恐怖的数据量,使得很多人一谈到大数据就会产生一种无力感。如同坐拥了一座巨大无比的金山,却每天只能用手慢慢地挖,慢慢地开采,像愚公移山一般,每天24小时不停歇,也不过开采这金山的九牛一毛。
最近在美国观看YOUTUBE视频时候弹出最多的广告是一家叫做Square的移动支付公司。Square公司推出的移动读卡器能够在配合智能手机与移动网络的情况下进行刷卡消费。这种突破了时间与空间局限的支付产品,大大地降低了刷卡消费支付的技术门槛和硬件需求,使得小微商户支持刷卡消费变成了现实。 广告中一位顾客在美发完成以后,愉快地掏出信用卡,在插有Square移动读卡器的ipad上付账。店长满面笑容。而中国公司迅速的跟进使得这种笑容从美国一直绽开到了中国。拉卡拉考拉手机支付从外观到功能与Square都极其相似。
试想一下,有一天你到菜市场买菜,掏钱的时候,蔬菜摊的王大姐从凳子上拿起正在充电的手机,面带微笑地对你说,“老妹/老弟你可以用信用卡付钱的。”或是你下班经过地铁站,想要在路边摊买一碗麻辣烫吃吃,付钱的时候,推车的小伙子掏出手机对你说,“大哥/美女你可以用信用卡付钱的。”这样的一个覆盖面,根据The long tail(长尾理论),在中国这么庞大的市场所创造的资金流是非常可怕的。而移动支付所带来的利益远不止这庞大的资金链,实际上,大量的支付信息所提供给公司的是大量宝贵的数据。当有一天,我们能够监控每一个用户的每一个小微的消费行为,那么我们对于大数据的收集将会进入另一个层次。本质上来讲,这些每日琐碎的小微消费正是组成我们每天生活的主体,而分析通过这些小微消费所得到的大数据,恰能给我们带来最精准的消费行为预测。
我第一次接触Square是在我本科学校宾州州立大学附近的一家叫Uncle Chan(陈叔叔)的中餐店。陈叔叔的外卖包括自取均是使用Square连接ipad进行刷卡支付。我从小就是素食主义者,每次点餐都要到店里面专门跟他们嘱咐一下。因为美国中餐馆的素菜种类十分稀少,我养成了一个几乎每家中餐厅都只吃同一道菜的习惯。一来二去,这家中餐店的老板一见到我就自动帮我下一个麻婆豆腐配炒饭和汽水的单。这种行为经常出现在我们的生活当中,但凡我们常去的服务场所,不论是餐馆、理发店还是烟酒店,都会不自觉地记录我们的行为,从而对我们进行消费行为的判断。实际上,这种现象正是大数据分析的最基本表现形式。假设一家公司能够同时拥有我所有的消费行为数据,相当于我每天去的每一家店的老板都是同一个人,那么这家公司自然能够轻松地预测出我日常的消费行为。而如果每天你刚要下地铁的时候,一家路边麻辣烫对你的手机进行广告投放,这种广告投放的力度和效果是巨大的。随着至尊宝、手机pos、阳城、拉卡拉等公司的推广,这种数据的收集是可能的。
移动支付在中国的特色功能给我们带来了更大的数据量。手机充值、游戏充值、公益捐款、彩票购买,无数独特的功能给大数据的收集提供了便利。如同通过分析特殊材料的消耗量,能够判断出战斗机产量一样,我们通过分析用户手机充费的频率及金额,也能够得到一些非常有用的信息。
中国这个庞大的国家,能够给我提供巨大无比的数据量。
大数据从开始出现时的以TB为单位,现在已经驶入了以EB为单位的时代。根据IDC和EMC发布的报告,到2020年地球上每个人的数据容储量将达到5TB。这令人感到恐怖的数据量,使得很多人一谈到大数据就会产生一种无力感。如同坐拥了一座巨大无比的金山,却每天只能用手慢慢地挖,慢慢地开采,如同愚公移山一般,每天24小时不停歇,也不过开采这金山的九牛一毛。我在做营销项目的过程中接触过一些美国的大数据分析公司。这些分析公司都在谈他们能够为特定的企业提供什么样的一种服务。可这些已知的、能够被提供的服务所利用上的大数据,可能只是这个金山上长的那些树而已,远非金子本身。未来科技能够做到的,是分析每个用户的每个细微的行为。心跳、呼吸、眨眼次数、血压、说话的音量、说话的速度,一切的一切都能够被收集。传说中的须弥山,由金、银、琉璃、玻瓈四宝构成,高110万千米。由这些大数据所构成的金山,恐怕比须弥山只大不小。这无量无边的数据所组成的金山,凭借我们现有的分析和处理能力,和愚公移山无二无别。
那么,面对这无量无边的大数据,我们如何应对?在我看来,正如同故事里的愚公,无论他怎样努力,大山终究无法被动摇。但是天帝派来的夸娥氏的儿子们,轻松就将大山抬走。用来分析数据的电脑,不论怎样更新换代,不论拥有再高的运算速度,终究只是工具。如同给猴子一个算盘,不论它怎么挥舞都始终偏离正确的使用方式。我们已经拥有了超越我们驾驭能力的工具,也拥有了超越我们驾驭范围的金山。那么下一步,就是要我们自己从愚公,转变成大力神的儿子。
我在上一篇文章里提到过大数据的未来,就是用大数据来探究宇宙人生的规律。在探究这个真相的过程中,唯有提升我们的认知,提升我们的境界,提高我们的智慧,才有可能从大数据中提炼出真理。唯有透过大数据的现象,看到商业规律的本质,才能够驾驭大数据并有的放矢。从前,布鲁诺支持日心说,挑战了教会的地心说,虽然超前地更接近于真相,却难逃被烧死的命运。若我们不去提高自己的认知,不去提升自己的境界,不去提高自己的智慧,我们也必将被湮没在这无量无边的大数据之中。即便坐拥着金山,也不知如何去挖掘。我们依然贫穷。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16