京公网安备 11010802034615号
经营许可证编号:京B2-20210330
2015年的风口是大数据?人工智能?还是SaaS
雷军说,站在台风口上,一头猪都能飞起来。找准市场的潜在热点,你成功的几率就会大增。在这样的市场里更容易招到好的人才、有更多露面的机会,更容易融资,也更容易退出。那么2015年的风口在哪里呢?我们来听听Elad Gil的看法。
初创企业退出的平均时限是 7 年。而站在风口上则可以大大缩短退出时间。1990 年代末,由于互联网热潮的兴起,被收购或 IPO 的时间仅仅是 2、3 年。最快的退出方式是并购。
而要想成功 IPO 通常需要有 5000 万美元的收入,还要有几个季度的盈利。不过如果处在风口的话,对盈利的要求也许就没那么高,甚至还可以宽松一阵子(比方说大数据热潮下 Hortonworks 的 IPO 就是例子)。
历史资料表明,那些挂起的风球有 50% 的概率是假预报。例子包括 1980 年代的第一波人工智能热,2000 年代早期的纳米技术热,以及 2000 年代中期的清洁技术和 2000 年代晚期的地理定位热。
而成功刮起来的风包括社交网络(2000 年代中期—Facebook、Twitter、LinkedIn)以及移动社交(2010 年代早期—WhatsApp、Instagram)。
那么 2015 年可能的风口在哪里呢?
1、飓风—可能催生大型独立公司和众多收购的市场
大数据
所谓的“大数据”可细分为四个领域:
(1)大规模数据处理(Hadoop、Spark 等)
(2)智能数据。如分析性工具获数据科学家使用的工具。
(3)数据中心基础设施(有时归为“大数据”)。如 Mesos(及 Mesosphere)。
(4)垂直数据应用(如针对医保索赔的数据存储和分析)
这个市场会创造出独立上市公司,也会产生大量收购。潜在的收割者包括传统的企业巨头(HP、IBM 等),以及该领域有流通股或市值很大的早期公司(如 Cloudera,、Hortonworks)等。此外,医疗保健方面(及其他 2、3 个关键领域)的垂直型数据公司可能会被更加专业的收购者收购(如 UnitedHealth)。
SaaS(软件即服务—含API/开发者工具)
如最近一些公司(Zenefits 和 Slack)爆发式增长所表明那样,SaaS 在企业协作、人力资源管理等方面还有着非常多的机会。
这个领域未来几年内每年会冒出 1、2 家非常大的公司(或退出)不足为奇。关键是找到差异化的有机分发模式(Slack)或业务模式(Zenefits)。
为了避免市场过于细化,此处将 API/ 开发者工具也归为一类。把许多服务做成 API 是行得通的,因为传统上其执行方式过于笨重。Stripe 和 Twilio 就是这类趋势的两个典范,Checkr.io 则是更近一点的例子。
基因组技术
基因组学尚未进入主流炒作周期。但由于市场发生的根本性转变,到了 2015 末 2016 初有可能会成为投资热点。这可能会催生大片的未来投资,也可能产生 1 亿至数十亿美元的退出。这一波基因组浪潮可能会推出独立的基因组软件公司(IBM、Oracle、Google、Illumina 等是可能的买家),也会出现更多的传统以生物学为中心的基因组学公司(医药与传统生物科技公司为买家)。这个领域会诞生少量大型的上市公司。
2、狂风—会有许多收购但是否会出独立公司不太清楚
人工智能(AI)
有两类 AI 公司:
(1) 开发通用型 AI 或“一般 AI 平台”的公司
(2) 应用 AI 解决非常专门的问题或客户需求的公司(如网页的机器翻译或筛选病例样本)
第一类公司会被 Google、Facebook 等少数公司以人才收购的方式收购掉。第二类公司可能会诞生少量大型的独立公司。我更看好第二类,因为此类公司真正创造价值。不过,如果你主要对快速退出感 兴趣的话,第一类公司会卖得更快,1 到 4 年就能以很好的估值卖给 Google 等试图囤积机器学习人才的公司。
物联网(IoT)
物联网是对“消费电子电器”进行重新的性感包装,是笨重的老式家庭设备的现代化外加软件和 API,从而实现无缝的互操作以及对数据的泛化记录和使用。
现在传统的消费电子电器令我想起 iPhone 之前的摩托罗拉 Razr,很棒的工业设计,但是没有真正的软件可用。
从退出角度来看,Google、苹果、三星、飞利浦、通用电器等都对有助于加速自身在此市场努力的这方面收购感兴趣。预期该市场会出现更多的小型和大型(5 亿美元以上)退出。但是 Nest 被收购之后哪些公司会成为长期可持续的上市公司尚不明朗。
安全
这个市场的破解更加棘手,但是预期 2015 年会出现更多的安全初创企业。企业端对安全产品的购买需求不断增长。但这个领域的进入门槛也会更高,因为它既需要强劲的销售渠道,又要有差异化的产品,从 而会压制市场的总体势头。会有少量初创企业实现中小型(数亿美元)退出,但该行业规模会受限于销售瓶颈(CIO 只会向少量供应商购买安全软件,但是太多的新型初创企业把关注点集中在“功能”而非全面解决方案上)。
3、轮盘赌—二元化市场,一将功成万骨枯
共享经济与按需经济
劳动力的分布或资源共享将继续成为创业热点。但是大多数初创企业都会失败,不过也会有少数取得巨大成功。正如 Facebook、Twitter、LinkedIn 成为第一波社交网络潮的巨头一样,AirBnB、Uber、Lyft、Instacart 是这一波共享经济潮的巨头(从市值看)。
类似地,正如有人(WhatsApp、Pinterest、Instagram)在第二波社交网络潮杀出血路一样,共享经济 / 劳动力分配还会诞生几家巨头,但大部分都将失败。
一句话,一将功成万骨枯。太多创业者都想做成某个微型市场的“Uber”。关键是要找出如何拿下现有的大市场的办法(如 Uber 和交通),或者用一个简单的用户案例和产品急剧扩张一个现有的市场(还是 Uber)。这种玩家一旦赢了就是大胜,因为他们颠覆了整个市场。
4、短暂困难时期
比特币
从长期来看,加密货币和块环链是是值得看好的。但是我怀疑现在的许多公司能否成功。需要有若干更大的结构性事件发生才能让比特币受到广泛采用。留给 现有的比特币公司的时间窗口不多了。能盈利(或现金充足)的比特币公司也许能熬到这一转变的发生(就像 AOL 等到互联网真正兴起一样),但许多公司烧钱速度太快了,很可能要失败。不过一旦公司做得足够成功,就会有大量潜在买家看上(Google、微软、eBay 及整个金融体系)。
随着市场逐步走向成熟,未来几年预计会出现加密货币公司的大量扩张,但最终会优胜劣汰。比特币可能会有几年的苦日子,时不时也会有 1、2 单大型的让人误入歧途的退出。不过这之后就会有加密货币公司的爆发,足以令现在的趋势相形见拙。所以我长期是极其看好这一领域的,但是会对其短期情况感到 担忧。
软件投资者对生物技术的投资
除了基因组以外,我还看到有越来越多的投资者投资传统的生物科技公司。基因组技术兴起的原因很明显,因为成本的大幅下降。但传统生物科技并没有享受 到市场的这场大转变。个人观点是这个市场会成为技术投资者的滑铁卢,因为他们误解了这个行业的结构(监管问题、知识产权问题等),且对于潜在的市场也没有 很好的嗅觉。尽管技术投资者未来几年在生物科技领域未必能做好,但是我认为少数人还是会大笔投钱进去的(类似于 2000 年代早期清洁技术的惨败)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16