京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代引发安全问题,应增强身份管理
2014年,虽然大数据应用还没有深入普及,但是已经有越来越多的行业用户尝试引入大数据相关技术解决如何管理、利用日益增长的各类数据,而往往随之的安全问题也日益受到关注,为了确保防止黑客盗窃数据信息的风险,企业应该在转移到充分利用大数据的优势的同时,也相当有必要采取相关的安全措施来保护他们数据资产的完整性。国外著名的SSH通信安全专家Matthew bring日前撰文分析当前存在安全问题现状,指出无视M2M身份验证的风险是非常可怕的,而这些授权的管理不善可能导致严重的数据泄露,Matthew bring还给出一定的解决方案,最后呼吁增强身份管理,保证大数据安全。
以下为原文:
大数据不再是白日梦。各行业组织机构正在以越来越快的速度筛选从网络数据中得出的可行性结论。90%的全球数据都是在过去的两年中产生的,数据背后隐藏的是对用户行为和市场趋势的洞察,这些洞察可能永远都无法通过其他渠道获得,就连白宫甚至都已参与进来,他们近期在大数据研究项目上投资了2亿美元。
随着大数据变得更加容易使用,人们对安全访问敏感数据集和其他领域的网络等也更加关注。如果企业希望不冒着数据泄漏的风险从大数据中获利,这些问题就必须得到有效解决。
确保M2M身份安全
要进行大数据分析,需要把大型数据集划分成更易于管理的单个部分,然后分别通过Hadoop集群处理,最后将它们重新组合以产生所需分析。该过程高度自动化,涉及大量跨集群的机器对机器(M2M)交互。
在Hadoop的基础设施会发生几个层次的授权,具体包括:
这些授权往往是基于SSH(Secure Shell)密钥的,其对于使用Hadoop是理想的,因其安全级别支持自动化的M2M通信。
许多基于流行的基于云计算的Hadoop服务也使用SSH作为访问Hadoop集群的认证方法。确保了授予访问大数据环境中的身份应该是一个高优先级的,但其也具有挑战性。这对于那些想要像使用Hadoop一样使用大数据分析的公司来说是一个很大的挑战。有些问题直截了当:
大数据并不是需要考虑这些问题的唯一技术。当越来越多的业务流程自动化,这些问题将遍布数据中心。自动化的M2M交易占到了数据中心所有通信的80%,然而大部分管理员则把焦点集中在员工帐户相关联的20%的通信流量。大数据将成为下一个杀手级应用,全面管理以机器为主的身份变得迫在眉睫。
风险
众所周知的数据泄漏包括滥用以机器为主的证书,这体现了忽视M2M身份验证的现实风险。当企业在管理终端用户身份上取得很大进步时,却忽视了应以同样标准处理机器为主的身份验证的需求。其结果就是使整个IT环境遍布风险。
然而,对于想要将集中的身份和存取管理(尽可能的)应用到数百万基于机器的身份来说,改变运行中的系统是一个很大的挑战。不中断系统迁移环境是一项复杂的工作,所以企业一直在犹豫也不足为奇。
密钥管理的不良状况
密钥管理的现状一直很糟糕。为了管理用于保护M2M通信的认证密钥,许多系统管理员使用电子表格或自编脚本来控制分配、监控和清点密钥。这种做法漏掉了许多密钥。想来他们也没有设置常规扫描,于是未被授权的非法途径便在不知不觉中添加进来。
缺少对密钥的集中控制严重影响法规遵从。以金融行业为例,规定要求必须严格控制谁可以访问敏感数据,比如最近强化了的PCI标准要求任何接受支付卡的地方——银行、零售商、餐馆和医院等——均需依照同样标准执行,无一例外。由于这些行业目前正在迅速果断的执行大数据战略,来分得用户驱动数据大潮的一杯羹,他们越来越容易违背法规并面临监管制裁。
安全步骤
组织机构必须承认并应对这些风险。这些步骤是行动开始的最佳做法:
安全策略
大数据的兴起伴随着数据存取控制的新型风险。M2M身份管理必不可少,但是传统的人工IAM做法效率低且风险高。盘点所有密钥,使用最优方法可以节省时间和金钱,同时提高安全性和法规遵从。由于大数据增加了访问敏感信息的认证门槛,组织机构必须采取积极措施,推出全面一致的身份和存取管理策略。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22