京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代引发安全问题,应增强身份管理
2014年,虽然大数据应用还没有深入普及,但是已经有越来越多的行业用户尝试引入大数据相关技术解决如何管理、利用日益增长的各类数据,而往往随之的安全问题也日益受到关注,为了确保防止黑客盗窃数据信息的风险,企业应该在转移到充分利用大数据的优势的同时,也相当有必要采取相关的安全措施来保护他们数据资产的完整性。国外著名的SSH通信安全专家Matthew bring日前撰文分析当前存在安全问题现状,指出无视M2M身份验证的风险是非常可怕的,而这些授权的管理不善可能导致严重的数据泄露,Matthew bring还给出一定的解决方案,最后呼吁增强身份管理,保证大数据安全。
以下为原文:
大数据不再是白日梦。各行业组织机构正在以越来越快的速度筛选从网络数据中得出的可行性结论。90%的全球数据都是在过去的两年中产生的,数据背后隐藏的是对用户行为和市场趋势的洞察,这些洞察可能永远都无法通过其他渠道获得,就连白宫甚至都已参与进来,他们近期在大数据研究项目上投资了2亿美元。
随着大数据变得更加容易使用,人们对安全访问敏感数据集和其他领域的网络等也更加关注。如果企业希望不冒着数据泄漏的风险从大数据中获利,这些问题就必须得到有效解决。
确保M2M身份安全
要进行大数据分析,需要把大型数据集划分成更易于管理的单个部分,然后分别通过Hadoop集群处理,最后将它们重新组合以产生所需分析。该过程高度自动化,涉及大量跨集群的机器对机器(M2M)交互。
在Hadoop的基础设施会发生几个层次的授权,具体包括:
这些授权往往是基于SSH(Secure Shell)密钥的,其对于使用Hadoop是理想的,因其安全级别支持自动化的M2M通信。
许多基于流行的基于云计算的Hadoop服务也使用SSH作为访问Hadoop集群的认证方法。确保了授予访问大数据环境中的身份应该是一个高优先级的,但其也具有挑战性。这对于那些想要像使用Hadoop一样使用大数据分析的公司来说是一个很大的挑战。有些问题直截了当:
大数据并不是需要考虑这些问题的唯一技术。当越来越多的业务流程自动化,这些问题将遍布数据中心。自动化的M2M交易占到了数据中心所有通信的80%,然而大部分管理员则把焦点集中在员工帐户相关联的20%的通信流量。大数据将成为下一个杀手级应用,全面管理以机器为主的身份变得迫在眉睫。
风险
众所周知的数据泄漏包括滥用以机器为主的证书,这体现了忽视M2M身份验证的现实风险。当企业在管理终端用户身份上取得很大进步时,却忽视了应以同样标准处理机器为主的身份验证的需求。其结果就是使整个IT环境遍布风险。
然而,对于想要将集中的身份和存取管理(尽可能的)应用到数百万基于机器的身份来说,改变运行中的系统是一个很大的挑战。不中断系统迁移环境是一项复杂的工作,所以企业一直在犹豫也不足为奇。
密钥管理的不良状况
密钥管理的现状一直很糟糕。为了管理用于保护M2M通信的认证密钥,许多系统管理员使用电子表格或自编脚本来控制分配、监控和清点密钥。这种做法漏掉了许多密钥。想来他们也没有设置常规扫描,于是未被授权的非法途径便在不知不觉中添加进来。
缺少对密钥的集中控制严重影响法规遵从。以金融行业为例,规定要求必须严格控制谁可以访问敏感数据,比如最近强化了的PCI标准要求任何接受支付卡的地方——银行、零售商、餐馆和医院等——均需依照同样标准执行,无一例外。由于这些行业目前正在迅速果断的执行大数据战略,来分得用户驱动数据大潮的一杯羹,他们越来越容易违背法规并面临监管制裁。
安全步骤
组织机构必须承认并应对这些风险。这些步骤是行动开始的最佳做法:
安全策略
大数据的兴起伴随着数据存取控制的新型风险。M2M身份管理必不可少,但是传统的人工IAM做法效率低且风险高。盘点所有密钥,使用最优方法可以节省时间和金钱,同时提高安全性和法规遵从。由于大数据增加了访问敏感信息的认证门槛,组织机构必须采取积极措施,推出全面一致的身份和存取管理策略。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01