京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代引发安全问题,应增强身份管理
2014年,虽然大数据应用还没有深入普及,但是已经有越来越多的行业用户尝试引入大数据相关技术解决如何管理、利用日益增长的各类数据,而往往随之的安全问题也日益受到关注,为了确保防止黑客盗窃数据信息的风险,企业应该在转移到充分利用大数据的优势的同时,也相当有必要采取相关的安全措施来保护他们数据资产的完整性。国外著名的SSH通信安全专家Matthew bring日前撰文分析当前存在安全问题现状,指出无视M2M身份验证的风险是非常可怕的,而这些授权的管理不善可能导致严重的数据泄露,Matthew bring还给出一定的解决方案,最后呼吁增强身份管理,保证大数据安全。
以下为原文:
大数据不再是白日梦。各行业组织机构正在以越来越快的速度筛选从网络数据中得出的可行性结论。90%的全球数据都是在过去的两年中产生的,数据背后隐藏的是对用户行为和市场趋势的洞察,这些洞察可能永远都无法通过其他渠道获得,就连白宫甚至都已参与进来,他们近期在大数据研究项目上投资了2亿美元。
随着大数据变得更加容易使用,人们对安全访问敏感数据集和其他领域的网络等也更加关注。如果企业希望不冒着数据泄漏的风险从大数据中获利,这些问题就必须得到有效解决。
确保M2M身份安全
要进行大数据分析,需要把大型数据集划分成更易于管理的单个部分,然后分别通过Hadoop集群处理,最后将它们重新组合以产生所需分析。该过程高度自动化,涉及大量跨集群的机器对机器(M2M)交互。
在Hadoop的基础设施会发生几个层次的授权,具体包括:
这些授权往往是基于SSH(Secure Shell)密钥的,其对于使用Hadoop是理想的,因其安全级别支持自动化的M2M通信。
许多基于流行的基于云计算的Hadoop服务也使用SSH作为访问Hadoop集群的认证方法。确保了授予访问大数据环境中的身份应该是一个高优先级的,但其也具有挑战性。这对于那些想要像使用Hadoop一样使用大数据分析的公司来说是一个很大的挑战。有些问题直截了当:
大数据并不是需要考虑这些问题的唯一技术。当越来越多的业务流程自动化,这些问题将遍布数据中心。自动化的M2M交易占到了数据中心所有通信的80%,然而大部分管理员则把焦点集中在员工帐户相关联的20%的通信流量。大数据将成为下一个杀手级应用,全面管理以机器为主的身份变得迫在眉睫。
风险
众所周知的数据泄漏包括滥用以机器为主的证书,这体现了忽视M2M身份验证的现实风险。当企业在管理终端用户身份上取得很大进步时,却忽视了应以同样标准处理机器为主的身份验证的需求。其结果就是使整个IT环境遍布风险。
然而,对于想要将集中的身份和存取管理(尽可能的)应用到数百万基于机器的身份来说,改变运行中的系统是一个很大的挑战。不中断系统迁移环境是一项复杂的工作,所以企业一直在犹豫也不足为奇。
密钥管理的不良状况
密钥管理的现状一直很糟糕。为了管理用于保护M2M通信的认证密钥,许多系统管理员使用电子表格或自编脚本来控制分配、监控和清点密钥。这种做法漏掉了许多密钥。想来他们也没有设置常规扫描,于是未被授权的非法途径便在不知不觉中添加进来。
缺少对密钥的集中控制严重影响法规遵从。以金融行业为例,规定要求必须严格控制谁可以访问敏感数据,比如最近强化了的PCI标准要求任何接受支付卡的地方——银行、零售商、餐馆和医院等——均需依照同样标准执行,无一例外。由于这些行业目前正在迅速果断的执行大数据战略,来分得用户驱动数据大潮的一杯羹,他们越来越容易违背法规并面临监管制裁。
安全步骤
组织机构必须承认并应对这些风险。这些步骤是行动开始的最佳做法:
安全策略
大数据的兴起伴随着数据存取控制的新型风险。M2M身份管理必不可少,但是传统的人工IAM做法效率低且风险高。盘点所有密钥,使用最优方法可以节省时间和金钱,同时提高安全性和法规遵从。由于大数据增加了访问敏感信息的认证门槛,组织机构必须采取积极措施,推出全面一致的身份和存取管理策略。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22