京公网安备 11010802034615号
经营许可证编号:京B2-20210330
中国惠普李时:2015大数据的真正落地是挑战
“在未来很长一段时间里,所有企业面临的IT核心问题都将是大数据的问题。因此,亟需将自然人、机器,以及所有IT系统所产生的数据,进行统一的集成和分析,而不管数据源在哪里,数据形态是怎样的”,这是中国惠普有限公司中国区副总裁、软件集团新任总经理李时在谈到2015应用趋势时表示的。
面对2015年,中国惠普软件集团的最大挑战是怎么样把大数据从一个概念真正地落地到为客户产生价值,即怎么样真正地结合企业用户的需求和惠普Haven大数据引擎的优势,把企业运营中所产生的大数据最终转化为用户的价值。这也是中国惠普软件集团在新的一年中拥有的最大机会。
李时坦言,“大数据的真正落地,一个最大的挑战和制约,是既懂大数据技术又懂业务还懂本地应用的人才的缺失。”中国惠普早两年就开始实施基于人才培养的大数据中长期发展战略了。“我们跟中国很多的地方政府进行合作,创立大数据人才培训基地、解决方案培训中心和大数据应用示范基地,就是希望通过现在的一些投入,在解决人才问题的同时,也能够有一些大数据解决方案的孵化,真正地做到大数据的落地。”
Haven大数据引擎实现100%信息利用率
经历这么多年IT的普及和发展之后,大部分企业的IT基础架构已经部署得非常好了。然而,企业又开始面临的一个新难题,即如何应对一个数据爆炸增长且多样性裂变的新常态、新现实——企业的IT系统在产生大量的数据,机器或者传感器也在产生大量数据;与此同时,企业中的每一个员工每天在发微信、发微博、拍照片的过程中会产生大量的数据,企业内外部运营中涉及的每一个传感器和摄像头,也同样会捕捉大量的视频数据和机器数据。另外,还包括企业所处社会生态的空气污染检测的数据、楼宇自动化产生的数据等等。
要想使这些大数据产生最大化的价值,惠普认为智能互联是最需要解决的一个问题,企业需要把自然人、机器,以及所有IT系统产生的数据做一个统一的集成和分析,而不能仅仅孤立地分析某一个渠道或某一种数据。
惠普Haven堪称一个高速的大数据的引擎,它能实现100%的信息利用率、出色的应用交付管理,打造可持续的市场营销优化,瓦解黑客入侵,并交付卓越的用户体验。
“具体来说就是,我们把业务数据、机器数据和自然数据的这三种数据,统一整合到Haven平台之上。因为其主要组成包括开放架构的Hadoop集成,因此能把所有原始的大量的数据做一个统一的存储、压缩和快速索引。然后,通过Autonomy产品,对自然数据或者非结构化、半结构化数据,进行统一的分析和认识;同时,也可以通过Vertica对结构化数据库里的行和列的数据,进行总体的分析。在安全性方面,通过惠普ArcSight安全产品,可以保证大量数据在可管可控的方式下被访问、被分析。此外,惠普还针对不同行业和不同业务场景,提供各种不同的应用,让数据在不同的维度产生价值。”
特别值得关注的是,最新发布的HP Haven OnDemand,还实现了大数据和云的结合。Haven OnDemand开放了所有的用户编程接口,这使Vertica、Autonomy不仅能为大企业客户所接触到,还能为个人开发者所接触到。让广大的开发者利用结构化和非结构化分析的能力,来开发适合他们的数据产生价值的下一代应用。当然,另一重要之处在于,Haven OnDemand还可以帮助企业把现有的数据迁移到云端,并把在云端的数据做一个全面的整合分析,为用户提升销售、降低运营成本或提升用户满意度。
大数据落地的实质是本地行业创新
针对大数据在中国落地还很慢的看法,李时并不完全认同。他介绍说,Autonomy在中国已有200多个行业用户,Vertica的用户增长也非常快,尤其是在电信、金融和政府等行业领域。
之所以市场上鲜有大数据案例的剖析和介绍,其原因是很多行业用户的大数据应用大多涉及某一企业的最新创新点、涉及企业的核心转型。比如,金融行业用户在考虑通过Vertica来做互联网金融授信和风险控制;通信行业用户在考虑通过Vertica来做网络优化,他们希望通过对现有客户的分析,更好地设计适合的产品,使客户留在现在的通信公司;他们还希望通过客户画像,更有针对性地做精准营销等。
相比之下,国外的行业用户更开放一下,他们在大数据应用上,也走得更远一些。比如,全球最大的社交媒体Facebook,在近几年业务爆发性增长的情况下,面对着每小时要加载几十个TB的数据的挑战,以应对超过10亿的客户访问。这种情况下,经过非常周密的、详细的技术验证之后,Facebook最终没有选择自己开发的基于Hadoop的解决方案,而是选择了Vertica,来支持基于移动端实时数据的业务需求。
再比如,在政务领域,伦敦奥运会通过大量采用Autonomy产品,做到了通过实时摄像头,对视频和音频的分析。同时,新西兰的奥克兰安全城市项目,也是通过Autonomy产品为城市服务,实现了对车型、号牌的分析和对摄像头的分析,实时监控犯罪事件的发生,以及城市交通流量的变化等。
对于大数据应用在中国落地慢的原因,李时认为最大的阻碍是中国目前尚缺乏既懂大数据技术又懂业务还懂本地需求、本地应用的人才。为此,李时制定出软件集团2015年的三大发展战略。
“首先是把惠普全球在云和大数据方面领先的解决方案和产品带到中国,包括HP Mobile Center、HP Propel和 HP Service Anywhere等;第二是创建基于惠普软件产品的合作伙伴的生态系统,共同推出更多适合中国的大数据落地方案;第三是基于惠普的服务体系,为客户提供更好的服务,提升用户的满意度。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27