京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据变美味,很好吃_数据分析师
计算机正在不断变得更加聪明。可它们会拥有创造力吗?国际商业机器公司(IBM)的一群研究人员认为会。他们已经开发出一套软件,能够利用数学、化学和海量数据,炮制出前所未有而又不同寻常的食谱。
为了构建他们的算法,研究者们将我们开发创意时可能会采取的步骤建立了模型。首先,你需要理解你打算解决的问题;然后,围绕该问题尽可能地多学习,从而构筑起专门的知识,并在这套知识的武装下,生成一些新的想法,甚至把不同类型的想法结合起来;接下来从这一大堆想法中挑选出最具创意的;最后,实现你的想法。尽管这些步骤中有很多以前就曾经由计算机来执行,但IBM团队的过人之处在于他们找到了量化一份食谱创造性的办法,并且能把所有不同的部分结合在一起。
“我一直用这套系统生成的食谱做饭。”领导IBM团队开发这种新型食谱生成引擎的拉夫·瓦什内(Lav Varshney)说,“我们自己创造的食谱中有一些确实非常好吃,比如奶油烤肯尼亚球芽甘蓝、开曼车前草甜点和瑞士-泰国混合式芦笋乳蛋饼。还有一些是与合作伙伴烹饪教育学院合作创造的,那可就是世界级的了,比如西班牙扁桃牛角面包和厄瓜多尔草莓甜点。”
厄瓜多尔草莓甜点:IBM的计算机大厨呈上的一盘美食。图片来源:IBM研究院
就让我们看一下IBM的计算机大厨是如何获得创造力的:
启动程序时,你会被要求选定一种关键食材,以及你想要浏览哪个地区的菜系,然后决定你感兴趣的餐食类型(汤或者蛋饼等等。)
程序要求你定义食谱的约束条件。左上角:菜系选择;右上角:菜式选择;下部:食材。
所有的数据都是在这一步被系统吸纳的。研究者们利用自然语言处理算法扫描并分析几百万份不同食谱的文本。利用这些数据,他们将成文的食谱转化为关系网,包括不同食材的用量和将这些食材做成食物的过程;他们扫描维基百科,了解在各个地区菜系中通常会用到哪些食材;他们考察了调味品的说明书,了解不同调味品中含有哪些分子,并获取了这些分子的化学结构方面的信息;他们还收录了人们对70种不同化学成分的“好感度”评分……
最终,研究者们积累了巨量计算机可读的知识体系,其中包括人类的口味偏好、地区食谱和这些食谱化学构成方面的信息。程序就这样做好了掌勺的准备。
软件从某种菜系的传统食谱开始,产生出几百万条符合用户要求的新食谱。这些食谱并非被随机抛出,而是根据一种叫做食物搭配律(the Food Pairing Principle)的经验法则生成的。该法则是说,在食谱中能够良好搭配的食材有着相同的呈味分子。
新食谱的生成方式是:“异化”现有食谱中的食材,然后将其与其他食谱融合,产生各种各样前所未见的混合食谱。(这种方法被称为遗传算法,是在模仿遗传变化的过程。)
这真不是个优良的选择算法。图片来源:Randall Munroe / XKCD
正如漫画所表现的,愿意品尝几百万种奇特的新食谱的朋友实在是不好找(油炸彩虹糖,有谁想尝尝?)。因此,程序把这一步自动化了——这可是真正高明的地方。
据瓦什内说:“先前很多计算机创造力的尝试都擅于生成创意,但不善挑选。我认为我们的主要贡献是,证明了大数据模型不仅能用于产生亿万条新想法,还能够从中指出,比如说,10条最佳的来。”
计算机如何确定哪些想法最有创造性呢?你首先要对创造性有一个可操作的定义。肯·罗宾逊(Ken Robinson)将创造性定义为“拥有有价值的原创想法的过程”。IBM的研究者们采纳了与此类似的衡量标准。他们声称,一条有创造性的想法应当既是新颖的,又是高质量的。
我们首先谈谈新颖。你或许认可花生酱和果冻可以一起吃,往热狗上抹点芥末酱也许也无妨。这是因为你对于各种食谱的可行性有着自己的一套信念。这些信念的基础是你认为什么食物好吃,不过你曾经享用过的食物也会对其产生巨大影响。可是,你也许从未想过把花生酱抹到热狗上。这种食谱与你对食物的信念冲突,因而使其出乎了你的意料。相反,抹芥末的热狗对于你对食谱的信念绝对没有影响。那是一种全然无趣的食谱。
IBM的科学家们采用了一种非常近似的想法——通过量化一份食谱更改一个人现有食谱世界观的程度来衡量其新颖程度。他们借助了一种叫做“贝叶斯惊奇度”的数学工具(以前这种工具被用来识别一段视频的哪些部分最吸引人们的注意)。瓦什内是这样向我解释这一概念的:“贝叶斯惊奇算法基本上就是在引入新创造的食谱之后,比较先前对食物的信念与新的信念。信念的改变越大,惊奇度越高。”
西班牙扁桃仁牛角面包——一种计算机生成的食谱。图片来源:IBM研究院
然后要考虑质量。味道是个复杂的东西。我们的舌头能够品尝出几种基本的味道:甜、咸、酸、苦和鲜。但我们对食物的体验还受到很多其他因素的影响:食物是不是温热;奶香四溢还是甜腻如糖;粗涩抑或黏滑;它覆于你舌背的方式;你咬它时它发出的声音;你的饥饿程度;以及一种味道所勾起的记忆等等。
研究者们提出,虽有凡此种种,味道的关键其实是气味。“神经美食学领域的研究工作得出了强有力的论点:气味是味觉的主要构成部分。”瓦什内说。如果这听起来违反直觉,想一下当你得了重感冒时,食物吃起来有多么没滋味吧——你的味觉感受器工作正常,但是你闻不到气味。
但程序又如何知道一盘菜闻起来什么味道?这个问题的答案要到化学中去找。软件会考察一份食谱中所有不同的口味分子,查询它们的化学性质——这个过程会用到很多技术名词,诸如“拓扑极曲面面积、重原子数、复杂度、可旋键数量,以及氢键受体数量。”通过将这些化学性质与其他70种气味分子做比较,研究者们可以预测特定的某种分子会有多么“好闻”。接下来他们在计算机中混合不同分子的气味,得出每种食物气味的总“怡人度”。想想看,这有多么惊人——他们利用食物中味道分子的化学性质预测它能有多好闻。
我询问瓦什内对我的这一惊人发现有何想法,他答道:“我也觉得很吃惊:通过诸如重原子数量那样的分子性质竟然能够预测愉悦之类的快感认知,不过享乐心理物理学的研究正在蓬勃发展,该领域的结论正与我们的发现不谋而合。下一步,我们希望能将对人类味觉的更精确认知纳入我们的模型。”
最终,软件产生了一系列食谱,并以三个标准排序:新奇程度、气味怡人度和口味搭配。
最终输出的食谱列表以新奇度(Surprise)、怡人度(Pleasantness)和搭配(Pairing)排出名次。
至此,终于到了放下笔记本,前往厨房的时候。
至于拉夫·瓦什内,他还没有试遍系统的全套本事。他说:“上个周末我在柏林,我们与当地一名主厨合作,承办了一场宴会的所有膳食,结果确实不错。我尤其喜欢一份藏红花味烤面包丁配烤番茄,还有一道低脂奶油饴糖伴红梅香菜冰淇淋。”在不久的将来,你甚至可能会看到附近一家店里正由计算机烹制食物。瓦什内补充说:“我们正在与数家大型食品生产商、食品供应商和香料/香精工坊讨论这项技术。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23