京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代:百度如何华丽变身_数据分析师
360搜索推出的时候,周鸿祎针对百度的两个软肋不断进行攻击,一个是商业模式的问题,另一个是内容封闭的问题。百度的竞价排名是世人皆知的,也是很多用户和企业咬牙切齿的问题。但是其实在内容封闭的问题上,才是隐含决定百度命脉的因子的关键所在。
之所以这么说,是因为如果百度没有在这个问题上处理好,也许就连做百度竞价的机会都没有了。
现在的互联网世界已经不像以前单纯,最明显的区别就是数据量有了无数个数量级的提升,进入了所谓的大数据时代。尤其在中国,无论是绝对数据量还是数据增长量都是非常惊人的。下面引用两组国外的数据:
根玛丽米克的最新报告中称,Facebook通过超10亿用户获得了大量自发性、分享的数据,每天上传超过3亿张图片,超过1250亿个好友关系。
根据IDC的数据,全球网民创建及分享的数字信息,包括文档、图片和Twitter消息,在5年中增长了9倍,2011年接近2ZB(1ZB=1万亿GB)。
那么,这么庞大的数据量是怎么来的呢?当然不会是靠开发者辛勤耕耘码出来的,而是由广大的普通用户自发创造出来的。而促使他们创造这么大数据量的,就是基于用户关系的分享需求。
供用户们分享的场所是什么呢?当然是像facebook这样的社交平台和应用,在中国就是微博、QQ、微信等。
中国网民的增长速度是非常惊人的,而且还有很大的上升空间,而这些应用和平台又是普通网民使用最多的,所以加入到这种数据大军的人还会不断快速提升,这种个性化和实时性的数据量还会不断爆炸。
那么,这跟百度有什么关系呢?关系太大了!因为这种个性化和实时性的的数据大部分是不能通过百度搜索到的!这样一来,百度能够搜到的东西不是越来越少了吗?或者说百度能够搜到的个性化、实时性的信息不是越来越少了吗?这种碎片化的信息搜索量是非常大的,也最能满足用户的个性化需求,在百度搜不到,那还要百度干什么?
百度当然还有很大的用处!但是用处不是在社交化的碎片化数据搜索,而在知识的搜索。我们可能不会用百度来搜某一件商品的用户评价,但是我们会用百度来搜这种商品的百科介绍(百度百科)、使用心得(百度经验)、使用教程(百度文库)等等,百度为我们提供的是更加系统和专业的知识,而不是普通网友的碎片化评论。也就是说,百度搜索以后需要向知识引擎的方向发展,完善实体搜索功能。
那么,为什么百度不能实现一个社交化的转型呢?这种转化谈何容易!百度从来都是缺乏社交基因,有的只是媒体基因,使用百度的用户并没有所谓的用户关系在里面,他们就像是走在同一条马路上的人,彼此并不需要多少交流和互动。但是社交平台里的用户都是住在一个屋子里的人,有着很强的用户关系,彼此会进行很多交流和互动。更重要的是,能够填充用户碎片化时间的只能是移动设备和移动应用,百度目前为止有这方面的拿得出手的产品吗?
因此,百度应该向着知识引擎的方向发展,不断加强内容投入,不断改善搜索质量,成为一个强大的知识引擎。以后我们不是什么鸡毛蒜皮的问题都要问百度,而是有不懂的知识就问百度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21