京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代:百度如何华丽变身_数据分析师
360搜索推出的时候,周鸿祎针对百度的两个软肋不断进行攻击,一个是商业模式的问题,另一个是内容封闭的问题。百度的竞价排名是世人皆知的,也是很多用户和企业咬牙切齿的问题。但是其实在内容封闭的问题上,才是隐含决定百度命脉的因子的关键所在。
之所以这么说,是因为如果百度没有在这个问题上处理好,也许就连做百度竞价的机会都没有了。
现在的互联网世界已经不像以前单纯,最明显的区别就是数据量有了无数个数量级的提升,进入了所谓的大数据时代。尤其在中国,无论是绝对数据量还是数据增长量都是非常惊人的。下面引用两组国外的数据:
根玛丽米克的最新报告中称,Facebook通过超10亿用户获得了大量自发性、分享的数据,每天上传超过3亿张图片,超过1250亿个好友关系。
根据IDC的数据,全球网民创建及分享的数字信息,包括文档、图片和Twitter消息,在5年中增长了9倍,2011年接近2ZB(1ZB=1万亿GB)。
那么,这么庞大的数据量是怎么来的呢?当然不会是靠开发者辛勤耕耘码出来的,而是由广大的普通用户自发创造出来的。而促使他们创造这么大数据量的,就是基于用户关系的分享需求。
供用户们分享的场所是什么呢?当然是像facebook这样的社交平台和应用,在中国就是微博、QQ、微信等。
中国网民的增长速度是非常惊人的,而且还有很大的上升空间,而这些应用和平台又是普通网民使用最多的,所以加入到这种数据大军的人还会不断快速提升,这种个性化和实时性的数据量还会不断爆炸。
那么,这跟百度有什么关系呢?关系太大了!因为这种个性化和实时性的的数据大部分是不能通过百度搜索到的!这样一来,百度能够搜到的东西不是越来越少了吗?或者说百度能够搜到的个性化、实时性的信息不是越来越少了吗?这种碎片化的信息搜索量是非常大的,也最能满足用户的个性化需求,在百度搜不到,那还要百度干什么?
百度当然还有很大的用处!但是用处不是在社交化的碎片化数据搜索,而在知识的搜索。我们可能不会用百度来搜某一件商品的用户评价,但是我们会用百度来搜这种商品的百科介绍(百度百科)、使用心得(百度经验)、使用教程(百度文库)等等,百度为我们提供的是更加系统和专业的知识,而不是普通网友的碎片化评论。也就是说,百度搜索以后需要向知识引擎的方向发展,完善实体搜索功能。
那么,为什么百度不能实现一个社交化的转型呢?这种转化谈何容易!百度从来都是缺乏社交基因,有的只是媒体基因,使用百度的用户并没有所谓的用户关系在里面,他们就像是走在同一条马路上的人,彼此并不需要多少交流和互动。但是社交平台里的用户都是住在一个屋子里的人,有着很强的用户关系,彼此会进行很多交流和互动。更重要的是,能够填充用户碎片化时间的只能是移动设备和移动应用,百度目前为止有这方面的拿得出手的产品吗?
因此,百度应该向着知识引擎的方向发展,不断加强内容投入,不断改善搜索质量,成为一个强大的知识引擎。以后我们不是什么鸡毛蒜皮的问题都要问百度,而是有不懂的知识就问百度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22