京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据从火到活是个慢动作_数据分析师
“有价值的数据,不是无用的信息爆炸,而是有价值的慢数据,可以预测个性化信息的数据。”这或许是2014年百度联盟峰会李彦宏发出的最掷地有声的大数据言论,当然,还有他提及的新企业级软件建言。
在此之前,大数据的火让外界一度将其捧上了云端,李彦宏的思路或许给外界仰视的目光至俯视的疑虑:在大数据的概念火完之后,如何让大数据先流动起来才具有普世意义。这座“金矿”的挖掘注定是一场革命性颠覆,而颠覆永远会是个慢动作。
末端对于入口的反哺究竟有多大?
大数据究竟的普世意义究竟在哪里?预测。在《大数据时代》一书中,作者维克托•迈尔•舍恩伯格表达的主旨其实就是这两个字。
既然李彦宏在此次大数据论述中拿智能硬件来举例,那么笔者也想就此领域结合大数据谈下个人拙见。
“硬+软+云”一直是智能硬件的标配,很明显,从这个产业链来看,大数据处于末端云中的位置,硬件则发挥了入口和采集器的功能,通过硬件入口互联网世界被重新强化,作为本体的“我”连接外部的人、流程、数据和事物,并将信息上升至云端,卸载、储存……当大数据被有序抽取、激活后,随后带来的便是这样一个成果——作为本体的“我”连接外部精准与匹配的人、流程、数据和事物。
请注意几个词汇:预测、精准、匹配。并且,排名有先后。
像现在满大街泛滥的健康领域的智能设备,很多都期待未来达到类似EHR(ElectronicHealthRecords,电子健康档案)和EMR(ElectronicMedical Records,电子病历)的模式,从医院管理的角度讲分布式存储和分布式计算有助于处理复杂的事物流程、实现医疗行业的信息化。而从患者体验的角度来讲,数据的提纯可以做到预测或预判,就像开处方一样给用户提供真正个性化定制分析方案。
但是,健康和医疗的概念相差甚远。更现实的是,被拽上天的大数据面临着冷酷的窘境。
然而,大数据或许叫错了
“大数据可能叫错了。”有业者曾认为,真正有意思的是数据变得在线了,尤其是互联网时代,任何东西在线远远比“大”更反映本质。在李彦宏口中,大数据的“大”又被另外两个字所代替:一个是开篇所讲的“慢”,另一个是李彦宏在此次百度联盟大会上所提的“新”。
这两个字也直击了大数据的痛点。无价值、重复性的数据不断生产与卸载,形成类似于信息噪点式的“数据垃圾场”。反而,有价值的信息依然被屏蔽在入口之外。
有价值的新数据、慢数据都去哪儿了?早在今年的全国“两会”上,李彦宏在会后回答记者问时便提及了两点答案:一、政府部门有很多数据现在没有上网,认为没用;二、即使上网了,人们还没有建立这样的使用习惯。
学者刘瑜曾在同名著作中阐述了一个关于“观念水位”的概念:“政治制度的变革缘于公众政治观念的变化,而政治观念的变化又根植于人们生活观念的变化。水涨起来,船自然浮起来。”国内目前正是缺乏对于大数据的这样一个“观念水位”。中国社会还没有建立起类似实证主义的使用体系。
比如大数据之所以能在美国上升为国家层面,原因是这个国家的确是有“用数据说话”的理念底蕴的。拿大家熟悉的传播学领域为例,早在上世纪中叶,传播学大家——拉扎斯菲尔德就知道如何用定量方法去研究传播效果的问题。回头想想,中国可以么?至少在相关人文学科上,还没形成依靠数据说话、实证主义研究的大氛围,这个看看本、硕学生的毕业论文就大概有个了然。
还面临哪些坎儿?
国内因缺乏政府机构的意识,也缺乏公民的推动。导致在对数据的应用上还处于极度不自信阶段。另外,还有这样几个戕害大数据进化的问题存在:
“要想找到有价值的数据,技术是有价值的,但在这里并不是最关键的。最关键的是什么呢?最关键的是domainknowledge(领域知识)、你的experience(经验)、以及跨领域的思考能力。”李彦宏如是言。
这和罗振宇一直强调的“跨界”型人才思想不谋而合。在这个传统工业社会向信息社会无声息过渡的阶段,两种社会形态圈子的人界限十分清晰,这对于讲究物(代表传统工业社会)联网(代表信息社会)的大数据进化将很要命。
李彦宏称大数据未来需求的是慢数据,在笔者盘点了上述诸多问题后,具有颠覆性创造意义的大数据,其应用与操作也必将是一个慢动作。除了霸权利益、系统顽疾,颠覆性科技事物还需要攻破例如文化伦理、秩序规范等更艰难的防线。
慢慢来,比较快。即便将来有人硬要拿铁块压住船,依然会无法阻挡未来社会对大数据波澜壮阔式的“观念水位”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27