京公网安备 11010802034615号
经营许可证编号:京B2-20210330
深度评论:大数据阴暗面之一,马云如何将我带到沟里
导语:数据库销售是大数据的应用枝节,最好的预期是转换率突破20%,也就是说A客群向具有一定关联度的B客群转换的比重有二成,便可烧香拜佛了。然而转换难度系数大,关键在于客户有“暴力倾向”。坚持客户永远是对的,您就试试,非叫您鼻青脸肿不可。
当下人人都讲大数据,数据库销售则是大数据的应用枝节。就数据库销售而言,最好的预期是转换率突破20%。就是说A客群向具有一定关联度的B客群转换的比重有二成,便可以叩大首烧高香了。搁置也是浪费,客户有诉求,主事者是推手,天作之合,客户资源重复使用,天下难求。
先看尿不湿大数据在啤酒销售的应用。超市将尿不湿和啤酒两件风马牛不相及的商品摆放在一起销售案例,居然入选营销教科书。超市认为购买者—丈夫,买了尿不湿,会随便买一听啤酒。因为妻子生产丈夫采购时随机犒劳一下自己。那么,购买尿不湿客群中的新晋丈夫向购买啤酒客群转换,排除不饮酒者,饮酒者中不饮啤酒者,饮啤酒者中对尿不湿承接的排泄物习惯产生联想者,三种人剥离掉好几十个百分点,像《非诚勿扰》女嘉宾朝五十码以外不喜欢的男孩,摁下按键发出“嘣嘣嘣”让人窒息的声音。对尿不湿大数据下的客户要赔上格外的小心,从而诱发他们产生购买啤酒的冲动。
判断从不缺席,只是先与后的差别。我想说,转换难度系数大,关键在于客户有“暴力倾向”。坚持客户永远是对的,您就试试,伸过左脸,再来右脸,非叫您鼻青脸肿不可。
亲历一个企业家大数据在申办高端信用卡的案例。依托企业家背后的企业所形成多达十个商圈,面向企业家群体发行高端信用卡,一致看好的发卡群体,以及看好的应用商圈,结果迥异。发卡银行对企业群体进件收集时,他们表现的无不是在签约席上,或在去签约的路上,企业家都很忙。在如获至宝的核心数据库资源中,简直成为投融市场的万花筒,折射千态万姿。
一是负债过重,即负债超过收入20倍,占44%;二是额度未能达标,达不到高端卡授信标准,超过16%;三是信誉不良接近12%。他们,很忙;他们同时很缺钱,患有融资饥渴症。本来,希冀企业家群体向高端信用卡持卡人实现远高于上述最好的转换率,有个好收成,结果希冀未遂。
最后一个案例说到马云。2011年谷歌推出了谷歌钱包,亚马逊基于 kindle 提供支付和转账服务,2014年10月苹果基于 iPhone 和 iPad 的 Apple pay推出苹果支付,沃尔玛、CVS、埃克森美孚等在内的零售联盟正建立移动支付体系,AT&T、T-Mobile和 Verizon电信巨头正建立移动支付和虚拟钱包。早在2004年12月,阿里巴巴马云基于淘宝和淘宝商城做起支付宝。客户需要精准的支付产品,跨界者提供精准产品之际,还给客户提供渠道、信息,继而向客户提供精准的服务。这是全球非商业银行跨界者们做网络支付、金融的充分但不必要的理由。
大数据给我留下了阴面。我想在14∶30网购峰时喊一嗓子,鼓动买家集体退货,不需“芝麻开门”的暗语,支付宝的大门肯定被挤破,保证金肯定被挤提精光。但是,我的担心被它们的另一跨界迅速击碎,马云成立了网商银行,赴美融资成功。
尾大不掉的原理告诉我们,合规牌照的事后取得,好比在事实婚姻面前补办一张结婚证书而已。比如银行卡清算,在互联网支付方面,所有银行都接入了支付宝,线上没有跨行清算一说;至少在去年夏天因“众所周知”的原因退回线上之前,线下绕银联转接,事实清晰表明想突围成为清算“第二”。再比如,同样与B端开展互联网支付,它可以做到“T+0”,可以免去交易费用,其他参与者想覆盖支付成本而收费,被非理性“惯坏的客户”自然将市场份额推向马云。
马云的成本覆盖规律则是羊毛出在鸡圈里的猪身上。羊找鸡,鸡圈里关着猪,折射中国商业跨行业运营的悖论。以互联网金融理财产品—余额宝(对接的货币基金是“天弘增利宝”)为例。在羊毛层面,客户不付费,支付本身不赚钱;在鸡圈里,客户将支付宝里的钱存入余额宝中,余额宝的后台再将资金以协议存款的方式存入银行,支付宝从中也取得收益;在猪的层面,余额宝“化零为整”的存款方式,使得商业银行的收益让渡出来。
我在东胜时让农信社客户赎回天弘增利宝,收益破6%,两月后在康巴什,我让另一农信社客户赎回,收益已然破5%,鄂尔多斯辖内的东胜到康巴什,车程不超过半小时,收益折损巨大。美国没有余额宝,因为那里几近没有存贷差,无利可图。
还是回到大数据主题。羊的大数据,如何腾挪到鸡圈里,鸡的大数据又如何地平移到猪身上,马云,你将我带到了沟里。依托大数据跨界,A行业简单地被B行业依附,且生存,那么,A行业想活也无解。B行业被跟风者先伴生,直至共死,大数据筛出的客户也挽救不了这个行业。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08