
大数据和预测分析:数据是否越多越好_数据分析师
Michael Berry对大数据的浮夸之词颇不以为然。身为旅游网站TripAdvisor的分析总监,他认为更多的数据未必带来正面的业务影响,比如大数据和预测分析的例子。
“很多预测分析的应用其实并不需要所有的数据。”Berry在Predictive Analytics World做主题演讲时说到。因此,对于数据科学家来说,重要的不是想着怎样分析所有的数据,而是看通过哪些数据可以得出真正有价值的结果。那么到底该怎么办呢?“对于这个问题,没有直截了当的答案。”Berry说。
但是,通过每次增加一些数据的方式来测试预测模型的有效性,可以最终确定多少数据是足够的。比如,当Berry想知道旅游代理商对某家酒店或特定客户的标准价位时,采用计算平均值的方法:选取两个取均值,然后是三个…最终在1万个时均值稳定下来。如果取2万个,均值肯定会发生变化,但这已经没有必要了。
“这就是关键所在。如果你有足够的数据,那么单纯数量上的增加就不会对结果造成很大的影响。”Berry说。
如果过多的数据不会带来本质的不同,那么什么才是关键所在呢?“很多方面。”Berry表示。数据的纯净度、样本的合理全面以及专注于数据质量和挖掘的人才等,都会导致结果的不同。
这些都是预测分析中的关键点,比如指出哪些变量可以使模型更健壮,或者结合哪些来源的数据可以发现新的模式。
“比如风寒效应(wind chill factor)。”Berry说。结合了实际的温度和风速,才能切实分析出人体对于外界环境的感受。
Berry并非唯一对当前大数据和预测分析境况有微词的人。咨询公司Rexer Analytics的创始人Karl Rexer认为数据科学家们多少都有点迷茫失措。在其2013年对数据挖掘从业者的调查看出,受访者反馈表明数据规模变得越来越大。但是,当被问及有多少数据被用于真正的分析时,答案和2007年的调查结果并无二致。
这并非证明所谓大数据是一场闹剧。“对于传统的预测分析建模或数据挖掘项目来说,总体的样本规模并未出现增长。”Rexer说。
将分析术语转化为业务端所能理解的语言,是一种巨大的挑战。工资、人力和服务外包提供商Paychex是这样打破藩篱的:根据业务端的建议来进行描述。
“当我们构建模型时,会举行一个命名比赛。”Paychex的建模分析师Tom Kern在本次Predictive Analytics World上表示。Kern的团队会向用户发送电子邮件,其中对模型进行了简短的描述,并且提供一些词汇供其使用。用户根据实际工作,创造缩写词汇,比如SAM表示销售预期模型(sales anticipation model),TIM表示领域识别和映射模型(territory identification and mapping model)。
如果业务端用户的建议最终被采用,其就会收到一个礼物卡。由此,就可以根据诸如销售人员之类的用户的期望,从而思考预测模型该做些甚么。
作为全球最大的零售商之一,宝洁公司宣布推出一款新型的低价汰渍洗衣剂,以此来吸引中端客户。该如何评价这个决策呢?
Shel Smith是市场分析公司Twenty-Ten Inc.的创始人,他的看法是:“如果你发布类似的产品,不仅仅是在获取新的客户,其实还在鼓励已有的客户替换现有的高价产品。”
鉴于当前经济形势的影响,这种担忧并非没有道理。但是,Smith对宝洁的策略持有信心。他认为,宝洁的策略是基于预测模型、海量数据和精准营销来达成的,可以在获取新客户的同时不影响现有品牌的销量。
“宝洁肯定有很多我们不知道的过人之处,但是在获取新客户方面并无什么神秘的。”Smith表示。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01