作者:丁点helper
来源:丁点帮你
今天我们开始讲什么是卡方分布及卡方检验。
第一个问题是,卡方为什么有平方?
还记得我们在第一篇讲两类错误中谈过的赌场的例子吗,小金赌色子输了很多钱,为了看色子是否有问题,他偷了一颗拿回家想偷偷验证一下是否有人动手脚。
小金闷在家丢了一天,一共丢了902次,而且每一次都做了记录(丢的是昏天黑地,可脑补这个画面)。
下面表格就是小金记录的获得的点数情况,比如一共有242次(27%)出现1点,有56次(6%)出现2点……有196次(22%)出现6点。
实际情况的色子点数
小金怎样通过”狂丢色子“来判断其是否有问题呢?
这就需要用到卡方检验了,实际上也是假设检验的大逻辑。
我们知道小金一共丢了902次,假设这颗色子是正常均匀的,那么每次丢色子,每一点出现的可能性都是1/6,所以理论上每一点出现的次数应该都是:150.33=902/6次。
如下表:我们把每一点实际出现的次数与理论情况下应该出现的次数做一个对比,其中实际观察次数用A表示,理论次数用T表示:
色子点数:理论VS实际
采用假设检验的标准语言来验证就是:
H0:这颗色子是均匀公平,每一点出现的可能性都为1/6;
H1:这颗色子不是均匀公平的,每一点点数出现的概率不都相同;
如果H0假设成立,那么“观察次数”和“理论次数”之间不会差很多;可是如果两者的差距过大,达到我们规定的某个水平,就认为在H0假设成立的情况下是不会出现的,此时就会拒绝原假设,即认为这个色子不是均匀的。
那怎么来计算这个差呢?
依照我们讲标准差的思路,如果直接将实际情况的点数与理论情况点数相减再加和取平均数,基本会得到0的结果,没有什么意义,而取绝对值运算又不方便,所以还是得通过平方。这就是卡方中平方的由来。
卡方值计算
上面这个计算公式,A代表“实际频数”,T代表“理论频数”。
如果把这个公式应用到小金丢色子的例子,就会得到:
卡方值为274.92,其对应的P值小于0.01,也就意味着,如果原假设成立(色子没问题),那么“理论与现实”出现这么大的差距的可能低于5%,我们认为这是不可能,因此,要拒绝原假设,认为“色子有问题”。
所以“十赌九输”是有原因的。
好了,回到今天的正题,小伙伴们可能觉得上面的例子和平常用到的卡方检验好像不太一样。
实际上,原理完全一致。
卡方检验最常用的是检验两个率是否一致,对照上述“丢色子”的例子,我们会先假设这两个率(注意是指总体率)相等,通过相等的总体率,再反推理论发生的频数,然后计算实际的观察频数与理论频数的卡方值来判断差距是否足够大,从而决定假设是否可以被拒绝。
下面以新冠肺炎为例,说明一下卡方检验的应用。
为比较A、B两个城市新冠肺炎病例的检出情况,分别随机抽取A地377人,B地301人,进行核酸检测。结果见下表(数据纯属虚构),现判断两个城市的新冠肺炎检出率是否相同?
如上表,A地的检出率是19.89%;B地的检出率是32.89%,卡方检验就要来判断这两个样本率所代表的总体率是否相等。
现在我们假设它们相等,那怎么计算理论频数呢?
此时就需要用到“合计检出率——25.66% “来算,这个数据就相当于上述色子例子中的1/6,是一个标准。
所以,如果两城市新冠肺炎检出率没有区别,且大概都为25.66%,那理论上A地会检出多少例呢?96.75(377*25.66%),而未检出的就为280.25(377-96.75)。
同理,B地会检出77.25(301*25.66%),未检出的就为223.75(301-77.25)。
现在我们就得到了各城市检出与未检出的理论频数,从而就能计算卡方值。
该卡方值对应的P值小于0.05,所以可以认为A、B两个城市新冠肺炎的检出率不一致,B地检出率更高,感染情况更严重。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03