京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:丁点helper
来源:丁点帮你
今天我们开始讲什么是卡方分布及卡方检验。
第一个问题是,卡方为什么有平方?
还记得我们在第一篇讲两类错误中谈过的赌场的例子吗,小金赌色子输了很多钱,为了看色子是否有问题,他偷了一颗拿回家想偷偷验证一下是否有人动手脚。
小金闷在家丢了一天,一共丢了902次,而且每一次都做了记录(丢的是昏天黑地,可脑补这个画面)。
下面表格就是小金记录的获得的点数情况,比如一共有242次(27%)出现1点,有56次(6%)出现2点……有196次(22%)出现6点。
实际情况的色子点数
小金怎样通过”狂丢色子“来判断其是否有问题呢?
这就需要用到卡方检验了,实际上也是假设检验的大逻辑。
我们知道小金一共丢了902次,假设这颗色子是正常均匀的,那么每次丢色子,每一点出现的可能性都是1/6,所以理论上每一点出现的次数应该都是:150.33=902/6次。
如下表:我们把每一点实际出现的次数与理论情况下应该出现的次数做一个对比,其中实际观察次数用A表示,理论次数用T表示:
色子点数:理论VS实际
采用假设检验的标准语言来验证就是:
H0:这颗色子是均匀公平,每一点出现的可能性都为1/6;
H1:这颗色子不是均匀公平的,每一点点数出现的概率不都相同;
如果H0假设成立,那么“观察次数”和“理论次数”之间不会差很多;可是如果两者的差距过大,达到我们规定的某个水平,就认为在H0假设成立的情况下是不会出现的,此时就会拒绝原假设,即认为这个色子不是均匀的。
那怎么来计算这个差呢?
依照我们讲标准差的思路,如果直接将实际情况的点数与理论情况点数相减再加和取平均数,基本会得到0的结果,没有什么意义,而取绝对值运算又不方便,所以还是得通过平方。这就是卡方中平方的由来。
卡方值计算
上面这个计算公式,A代表“实际频数”,T代表“理论频数”。
如果把这个公式应用到小金丢色子的例子,就会得到:
卡方值为274.92,其对应的P值小于0.01,也就意味着,如果原假设成立(色子没问题),那么“理论与现实”出现这么大的差距的可能低于5%,我们认为这是不可能,因此,要拒绝原假设,认为“色子有问题”。
所以“十赌九输”是有原因的。
好了,回到今天的正题,小伙伴们可能觉得上面的例子和平常用到的卡方检验好像不太一样。
实际上,原理完全一致。
卡方检验最常用的是检验两个率是否一致,对照上述“丢色子”的例子,我们会先假设这两个率(注意是指总体率)相等,通过相等的总体率,再反推理论发生的频数,然后计算实际的观察频数与理论频数的卡方值来判断差距是否足够大,从而决定假设是否可以被拒绝。
下面以新冠肺炎为例,说明一下卡方检验的应用。
为比较A、B两个城市新冠肺炎病例的检出情况,分别随机抽取A地377人,B地301人,进行核酸检测。结果见下表(数据纯属虚构),现判断两个城市的新冠肺炎检出率是否相同?
如上表,A地的检出率是19.89%;B地的检出率是32.89%,卡方检验就要来判断这两个样本率所代表的总体率是否相等。
现在我们假设它们相等,那怎么计算理论频数呢?
此时就需要用到“合计检出率——25.66% “来算,这个数据就相当于上述色子例子中的1/6,是一个标准。
所以,如果两城市新冠肺炎检出率没有区别,且大概都为25.66%,那理论上A地会检出多少例呢?96.75(377*25.66%),而未检出的就为280.25(377-96.75)。
同理,B地会检出77.25(301*25.66%),未检出的就为223.75(301-77.25)。
现在我们就得到了各城市检出与未检出的理论频数,从而就能计算卡方值。
该卡方值对应的P值小于0.05,所以可以认为A、B两个城市新冠肺炎的检出率不一致,B地检出率更高,感染情况更严重。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04