
sparkSQL是Spark用来处理结构化数据的一个模块,它提供了一个编程抽象叫做DataFrame并且作为分布式SQL查询引擎的作用。
Shark也就是Hive on Spark,Shark在HiveQL方面重用了Hive里HiveQL的解析、逻辑执行计划、翻译执行计划优化等逻辑,通过Hive中HiveQL解析,把HiveQL翻译成Spark上的RDD操作。Shark的设计导致了两个问题:
(1)执行计划优化完全依赖于Hive,对于添加新的优化策略很是不便;
(2)Spark是线程级并行,而MapReduce是进程级并行。Spark在兼容Hive的实现上存在线程安全问题,因而使得Shark必须使用另外一套独立维护的打了补丁的Hive源码分支;
Spark团队在汲取了shark的优点基础上,重新设计了sparkSQL,使sparkSQL在数据兼容、性能优化、组件扩展等方面有很大的提升
1.数据兼容:支持从Hive表、外部数据库(JDBC)、RDD、Parquet 文件、以及JSON 文件中获取数据;
2.组件扩展:SQL 语法解析器、分析器、优化器都能够重新定义;
3.性能优化:内存列存储、动态字节码生成等优化技术,内存缓存数据;
4.多语言支持:Scala、Java、Python;
三、 DataFrame
1.DataFrame让Spark具备了处理大规模结构化数据的能力,比起原有的RDD转化方式,更加简单易用,而且计算能力也有显著提高。
RDD是分布式的Java对象的集合,但是,RDD对于对象内部结构并不可知。
DataFrame是一种以RDD为基础的分布式数据集,提供了详细的结构信息。
Spark能够轻松实现从MySQL到DataFrame的转化,并且支持SQL查询。
2.创建DataFrame
import org.apache.spark.sql.SparkSession val spark = SparkSession.builder().getOrCreate() //是支持RDDs转换为DataFrames及后续sql操作 import spark.implictis._ val df = spark.read.json("file://usr/local/spark/examples/src/main/resources/people.json") df.show() //打印模式信息 df.printSchema() df.select(df("name"), df("age")+1).show() //分组聚合 df.groupBy("age").count().show()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05