京公网安备 11010802034615号
经营许可证编号:京B2-20210330
sparkSQL是Spark用来处理结构化数据的一个模块,它提供了一个编程抽象叫做DataFrame并且作为分布式SQL查询引擎的作用。
Shark也就是Hive on Spark,Shark在HiveQL方面重用了Hive里HiveQL的解析、逻辑执行计划、翻译执行计划优化等逻辑,通过Hive中HiveQL解析,把HiveQL翻译成Spark上的RDD操作。Shark的设计导致了两个问题:
(1)执行计划优化完全依赖于Hive,对于添加新的优化策略很是不便;
(2)Spark是线程级并行,而MapReduce是进程级并行。Spark在兼容Hive的实现上存在线程安全问题,因而使得Shark必须使用另外一套独立维护的打了补丁的Hive源码分支;
Spark团队在汲取了shark的优点基础上,重新设计了sparkSQL,使sparkSQL在数据兼容、性能优化、组件扩展等方面有很大的提升
1.数据兼容:支持从Hive表、外部数据库(JDBC)、RDD、Parquet 文件、以及JSON 文件中获取数据;
2.组件扩展:SQL 语法解析器、分析器、优化器都能够重新定义;
3.性能优化:内存列存储、动态字节码生成等优化技术,内存缓存数据;
4.多语言支持:Scala、Java、Python;
三、 DataFrame
1.DataFrame让Spark具备了处理大规模结构化数据的能力,比起原有的RDD转化方式,更加简单易用,而且计算能力也有显著提高。
RDD是分布式的Java对象的集合,但是,RDD对于对象内部结构并不可知。
DataFrame是一种以RDD为基础的分布式数据集,提供了详细的结构信息。
Spark能够轻松实现从MySQL到DataFrame的转化,并且支持SQL查询。
2.创建DataFrame
import org.apache.spark.sql.SparkSession val spark = SparkSession.builder().getOrCreate() //是支持RDDs转换为DataFrames及后续sql操作 import spark.implictis._ val df = spark.read.json("file://usr/local/spark/examples/src/main/resources/people.json") df.show() //打印模式信息 df.printSchema() df.select(df("name"), df("age")+1).show() //分组聚合 df.groupBy("age").count().show()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22