
今天跟大家推荐的这篇文章又是python的问什么系列。还是那句话,只有更深刻的理解python的基础理论,才嫩更好地将其应用到实际案例中。希望今天这篇文章对于大家学习和使用python有所帮助。
文章来源: Python猫
作者:豌豆花下猫
本文出自“Python为什么”系列
Python 在涉及真值判断(Truth Value Testing)时,语法很简便。
比如,在判断某个对象是否不为 None 时,或者判断容器对象是否不为空时,并不需要显示地写出判断条件,只需要在 if 或 while 关键字后面直接写上该对象即可。
下图以列表为例,if my_list 这个简短的写法可以表达出两层意思:
如果需要作出相反的判断,即“如果为 None 或为空”,只需要写成if not my_list 即可。
通常而言,当一个值本身是布尔类型时,写成"if xxx"(如果真),在语义上就很好理解。如果 xxx 本身不是布尔类型时,写成“if xxx”(如果某东西),则在语义上并不好理解。
在 C/C++/Java 之类的静态语言中,通常要先基于 xxx作一个比较操作,比如“if (xxx == null)”,以此得到一个布尔类型的值的结果,然后再进行真值判断。否则的话,若“if xxx”中有非布尔类型的值,则会报类型错误。
Python 这门动态语言在这种场景中表现出了一种灵活性,那么,我们的问题来了:为什么 Python 不需要先做一次比较操作,直接就能对任意对象作真值判断呢?
先来看看文档 中对真值判断的描述:
简单而言,Python 的任何对象都可以用在 if 或 while 或布尔操作(and、or、not)中,默认情况下认为它是 true,除非它有__bool__() 方法返回False 或者有__len__() 方法返回0 。
对于前面的例子,my_list 没有__bool__() 方法,但是它有__len__() 方法,所以它是否为 true,取决于这个方法的返回值。
接着,我们继续刨根问底:Python 为什么可以支持如此宽泛的真值判断呢?在执行if xxx这样的语句时,它到底在做些什么?
对于第一个问题,Python 有个内置的 bool() 类型,可以将任意对象转化成布尔值。那么,这是否意味着 Python 在进行真值判断时,会隐式地 调用 bool() 呢(即转化成if bool(xxx))?(答案为否,下文有分析)
对于第二个问题,可以先用dis 模块来查看下:
POP_JUMP_IF_FALSE指令对应的是 if 语句那行,它的含义是:
If TOS is false, sets the bytecode counter to target. TOS is popped.
如果栈顶元素为 false,则跳转到目标位置。
这里只有跳转动作的描述,仍看不到一个普通对象是如何变成布尔对象的。
Python 在解释器中到底是如何实现真值判断的呢?
在微信群友 Jo 的帮助下,我找到了 CPython 的源码(文件:ceval.c、object.c):
可以看出,对于布尔类型的对象(即 Py_True 和 Py_False),代码会进入到快速处理的分支;而对于其它对象,则会用 PyObject_IsTrue() 计算出一个 int 类型的值。
PyObject_IsTrue() 函数在计算过程中,依次会获取 nb_bool、mp_length 和 sq_length 的值,对应的应该就是 __bool__() 和 __len__() 这两个魔术方法的返回值。
这个过程就是前文中所引用的官方文档的描述,正是我们想要找的答案!
另外,对于内置的 bool(),它的核心实现逻辑正是上面的 PyObject_IsTrue() 函数,源码如下(boolobject.c):
所以,Python 在对普通对象作真值判断时,并没有隐式地调用 bool(),相反它调用了一个独立的函数(PyObject_IsTrue()),而这个函数又被 bool() 所使用。
也就是说,bool() 与 if/while 语句对普通对象的真值判断,事实上是基本相同的处理逻辑。知道了原理,就会明白if bool(xxx) 这种写法是多此一举的了(我曾见到过)。
至此,我们已经回答了前文中提出的问题。
接下来,有 3 个测试例子,可以作进一步的验证:
你可以暂停而思考下:bool(Test1) 与 bool(Test1()) 各是什么结果?然后依次判断剩下的两个类,结果又会是什么?
揭晓答案:
bool(Test1) # True bool(Test2) # True bool(Test3) # True bool(Test1()) # True bool(Test2()) # False bool(Test3()) # True
原因如下:
除了这 3 个例子,还有一种情况值得验证,那就是对于数字类型,它们是怎么做真值判断的呢?
我们可以验证一下数字类型是否拥有那两个魔术方法:
hasattr(2020, "__bool__") hasattr(2020, "__len__")
不难验证出,数字拥有的是 __bool__() 魔术方法,并没有__len__() 魔术方法,而且所有类型的数字其实被分成了两类:
Python 中if xxx 这种简便的写法,虽然是正规的真值判断语法,并它但并不符合常规的语义。在 C/C++/Java 之类的语言中,要么 xxx 本身是布尔类型的值,要么是一种可返回布尔类型值的操作,但是在 Python 中,这个“xxx”竟然还可以是任意的 Python 对象!
本文通过对文档、字节码和 CPython 解释器的源码逐步分析,发现了 Python 的真值判断过程并不简单,可以提炼出以下的几个要点:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10