京公网安备 11010802034615号
经营许可证编号:京B2-20210330
文章来源: 接地气学堂
作者:接地气的陈老师
很多同学搞不清楚数据运营和数据分析啥区别。一提起要“搭建数据运营体系”或者“建立数据运营机制”就懵圈:
1、这跟我做一套数据指标有什么区别?
2、为啥我做了数据指标,可运营部门根本不理我?
3、好像每一种运营都有自己的指标体系了,还咋个数据运营法?
今天我们系统解答一下。
先问一个最关键问题:数据运营,重点在数据上,还是运营上?
一
屏
幕
思
考
时
间
01运营与数据关系
注意,运营是个大工作,里边的分支非常多。单独看每一类运营,都有一套自己的指标体系。这就是开头说的:“运营已经自己有指标了,我做了指标他们不看”问题的本质所在。(如下图)
为什么会这样?因为从本质上看,运营是个辅助性工作。理论上,如果产品力足够强大,商品天下无敌,那根本没运营啥事。——用户自己就抢着买到断货,玩的乐不思蜀了,运营啥运营。可大部分产品、商品没有这么厉害,因此需要运营打辅助,通过用户激励、促销活动、内容传播、商品运作等等手段,来保持用户的新鲜感,促进用户持续活跃和付费。俗话说:“产品不够,运营凑”就是这个意思。
因此运营会特别在意数据,并且特别在意数据里的“自然增长率”——他们的所有工作,都是在“自然增长率”之上做叠加。
诸如此类
运营在体现自己功劳的时候一定会带上数据。因此往往各个部门已经建立了自己的数据指标。
02数据运营的破题关键
如果数据运营把重点放在数据上,那最终就是沦为跑数机器的命。运营自己已经有数据指标了,你就等着被他们催着取数好了,而且还是加急加急加加急。这根本不需要单独设一个岗位,只要花月薪6000招聘一个人行sql机,让数据部门准备个大宽表即可。实际上,很多公司确实是这么干的,这也是为啥很多同学会有开头的疑惑。我们今天不谈这些low B公司,我们分享一下数据运营的真正目标,以及大厂们是拿它来干什么的。
运营各自看数据,看似科学,实则带着原罪:运营工作本身需要相互配合,可各个部门的小团伙利益是天然冲突的。
在一个需要相互配合的工作里,各自考核数据,必然导致部门间相互拆台。因此数据运营的更好用法,不是拿来当跑数机,而是建立一套从整体目标出发的数据考核机制,让所有部门跳出小圈子,为整体利益服务。这才是设立这个岗位的初衷,和岗位的真正价值。
所以开头的题目选B,数据运营本质是运营,是要建立一套从整体目标出发,引导各子运营小组工作的考核机制。它本质是个工作机制,因此需要部门间共识目标,协同配合,取代各自为战的状态,这样才能发挥作用。
03数据运营体系搭建方法
第一步:共识整体目标,制定整体战术。各个运营小组,共识年度大部门整体目标(比如DAU、转化率、销售金额等),并且选择落地大目标的战术,把大目标分解到各个月。注意:分解方法和不一定是按月平均,或按过往趋势分摊。分解方法可能和战术选择有关(如下图)
第二步:设定阶段性重点,各小组分配任务。
第三步:分解阶段性指标,各部门执行、监测、反馈。这一步就是常规运营数据指标的监控过程,不再赘述了。有了前两步,每阶段的运营工作就有了清晰的主任务,就不用纠结在“为啥短期类活跃率降了”“到底自然增长该写多少合适”“又有几个客户投诉很激烈”——整体目标达成就好。细节问题,可以在各小组自己复盘的时候,再找改进点。
第四步:监控执行进度,从小到大检讨效果。这时候要牢记检讨三原则:
当所有部门在部门例会上共识目标,跟踪进度,反馈问题,协同工作的时候,这套机制就算正常运转起来了。这样能保证整体目标的最大化落地,也能提醒各小组关键任务是什么——不要被自己一亩三分地发生的破事淹没了。
看完了,很多同学说:这一套方法论和增长黑客看起来很像呀。是滴,所谓增长黑客,其实也是一种统一协调各部门,为“增长”服务的办法。所以方法思路是很类似的。只可惜和数据运营一样,也被很多公司用歪了。
类似的,大家在做具体工作的时候,也不必要因为眼前公司的种种举动而怀疑人生——有可能就是你的公司水平太低而已。关键是多理解一个业务的本质,站在对业务有利的角度思考,多去理解业务部门同事真实处境与出发点,不要被玄乎的概念带着走。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11