
文章来源: 接地气学堂
作者:接地气的陈老师
很多同学搞不清楚数据运营和数据分析啥区别。一提起要“搭建数据运营体系”或者“建立数据运营机制”就懵圈:
1、这跟我做一套数据指标有什么区别?
2、为啥我做了数据指标,可运营部门根本不理我?
3、好像每一种运营都有自己的指标体系了,还咋个数据运营法?
今天我们系统解答一下。
先问一个最关键问题:数据运营,重点在数据上,还是运营上?
一
屏
幕
思
考
时
间
01运营与数据关系
注意,运营是个大工作,里边的分支非常多。单独看每一类运营,都有一套自己的指标体系。这就是开头说的:“运营已经自己有指标了,我做了指标他们不看”问题的本质所在。(如下图)
为什么会这样?因为从本质上看,运营是个辅助性工作。理论上,如果产品力足够强大,商品天下无敌,那根本没运营啥事。——用户自己就抢着买到断货,玩的乐不思蜀了,运营啥运营。可大部分产品、商品没有这么厉害,因此需要运营打辅助,通过用户激励、促销活动、内容传播、商品运作等等手段,来保持用户的新鲜感,促进用户持续活跃和付费。俗话说:“产品不够,运营凑”就是这个意思。
因此运营会特别在意数据,并且特别在意数据里的“自然增长率”——他们的所有工作,都是在“自然增长率”之上做叠加。
诸如此类
运营在体现自己功劳的时候一定会带上数据。因此往往各个部门已经建立了自己的数据指标。
02数据运营的破题关键
如果数据运营把重点放在数据上,那最终就是沦为跑数机器的命。运营自己已经有数据指标了,你就等着被他们催着取数好了,而且还是加急加急加加急。这根本不需要单独设一个岗位,只要花月薪6000招聘一个人行sql机,让数据部门准备个大宽表即可。实际上,很多公司确实是这么干的,这也是为啥很多同学会有开头的疑惑。我们今天不谈这些low B公司,我们分享一下数据运营的真正目标,以及大厂们是拿它来干什么的。
运营各自看数据,看似科学,实则带着原罪:运营工作本身需要相互配合,可各个部门的小团伙利益是天然冲突的。
在一个需要相互配合的工作里,各自考核数据,必然导致部门间相互拆台。因此数据运营的更好用法,不是拿来当跑数机,而是建立一套从整体目标出发的数据考核机制,让所有部门跳出小圈子,为整体利益服务。这才是设立这个岗位的初衷,和岗位的真正价值。
所以开头的题目选B,数据运营本质是运营,是要建立一套从整体目标出发,引导各子运营小组工作的考核机制。它本质是个工作机制,因此需要部门间共识目标,协同配合,取代各自为战的状态,这样才能发挥作用。
03数据运营体系搭建方法
第一步:共识整体目标,制定整体战术。各个运营小组,共识年度大部门整体目标(比如DAU、转化率、销售金额等),并且选择落地大目标的战术,把大目标分解到各个月。注意:分解方法和不一定是按月平均,或按过往趋势分摊。分解方法可能和战术选择有关(如下图)
第二步:设定阶段性重点,各小组分配任务。
第三步:分解阶段性指标,各部门执行、监测、反馈。这一步就是常规运营数据指标的监控过程,不再赘述了。有了前两步,每阶段的运营工作就有了清晰的主任务,就不用纠结在“为啥短期类活跃率降了”“到底自然增长该写多少合适”“又有几个客户投诉很激烈”——整体目标达成就好。细节问题,可以在各小组自己复盘的时候,再找改进点。
第四步:监控执行进度,从小到大检讨效果。这时候要牢记检讨三原则:
当所有部门在部门例会上共识目标,跟踪进度,反馈问题,协同工作的时候,这套机制就算正常运转起来了。这样能保证整体目标的最大化落地,也能提醒各小组关键任务是什么——不要被自己一亩三分地发生的破事淹没了。
看完了,很多同学说:这一套方法论和增长黑客看起来很像呀。是滴,所谓增长黑客,其实也是一种统一协调各部门,为“增长”服务的办法。所以方法思路是很类似的。只可惜和数据运营一样,也被很多公司用歪了。
类似的,大家在做具体工作的时候,也不必要因为眼前公司的种种举动而怀疑人生——有可能就是你的公司水平太低而已。关键是多理解一个业务的本质,站在对业务有利的角度思考,多去理解业务部门同事真实处境与出发点,不要被玄乎的概念带着走。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29