京公网安备 11010802034615号
经营许可证编号:京B2-20210330
文章来源: 接地气学堂
作者:接地气的陈老师
很多同学搞不清楚数据运营和数据分析啥区别。一提起要“搭建数据运营体系”或者“建立数据运营机制”就懵圈:
1、这跟我做一套数据指标有什么区别?
2、为啥我做了数据指标,可运营部门根本不理我?
3、好像每一种运营都有自己的指标体系了,还咋个数据运营法?
今天我们系统解答一下。
先问一个最关键问题:数据运营,重点在数据上,还是运营上?
一
屏
幕
思
考
时
间
01运营与数据关系
注意,运营是个大工作,里边的分支非常多。单独看每一类运营,都有一套自己的指标体系。这就是开头说的:“运营已经自己有指标了,我做了指标他们不看”问题的本质所在。(如下图)
为什么会这样?因为从本质上看,运营是个辅助性工作。理论上,如果产品力足够强大,商品天下无敌,那根本没运营啥事。——用户自己就抢着买到断货,玩的乐不思蜀了,运营啥运营。可大部分产品、商品没有这么厉害,因此需要运营打辅助,通过用户激励、促销活动、内容传播、商品运作等等手段,来保持用户的新鲜感,促进用户持续活跃和付费。俗话说:“产品不够,运营凑”就是这个意思。
因此运营会特别在意数据,并且特别在意数据里的“自然增长率”——他们的所有工作,都是在“自然增长率”之上做叠加。
诸如此类
运营在体现自己功劳的时候一定会带上数据。因此往往各个部门已经建立了自己的数据指标。
02数据运营的破题关键
如果数据运营把重点放在数据上,那最终就是沦为跑数机器的命。运营自己已经有数据指标了,你就等着被他们催着取数好了,而且还是加急加急加加急。这根本不需要单独设一个岗位,只要花月薪6000招聘一个人行sql机,让数据部门准备个大宽表即可。实际上,很多公司确实是这么干的,这也是为啥很多同学会有开头的疑惑。我们今天不谈这些low B公司,我们分享一下数据运营的真正目标,以及大厂们是拿它来干什么的。
运营各自看数据,看似科学,实则带着原罪:运营工作本身需要相互配合,可各个部门的小团伙利益是天然冲突的。
在一个需要相互配合的工作里,各自考核数据,必然导致部门间相互拆台。因此数据运营的更好用法,不是拿来当跑数机,而是建立一套从整体目标出发的数据考核机制,让所有部门跳出小圈子,为整体利益服务。这才是设立这个岗位的初衷,和岗位的真正价值。
所以开头的题目选B,数据运营本质是运营,是要建立一套从整体目标出发,引导各子运营小组工作的考核机制。它本质是个工作机制,因此需要部门间共识目标,协同配合,取代各自为战的状态,这样才能发挥作用。
03数据运营体系搭建方法
第一步:共识整体目标,制定整体战术。各个运营小组,共识年度大部门整体目标(比如DAU、转化率、销售金额等),并且选择落地大目标的战术,把大目标分解到各个月。注意:分解方法和不一定是按月平均,或按过往趋势分摊。分解方法可能和战术选择有关(如下图)
第二步:设定阶段性重点,各小组分配任务。
第三步:分解阶段性指标,各部门执行、监测、反馈。这一步就是常规运营数据指标的监控过程,不再赘述了。有了前两步,每阶段的运营工作就有了清晰的主任务,就不用纠结在“为啥短期类活跃率降了”“到底自然增长该写多少合适”“又有几个客户投诉很激烈”——整体目标达成就好。细节问题,可以在各小组自己复盘的时候,再找改进点。
第四步:监控执行进度,从小到大检讨效果。这时候要牢记检讨三原则:
当所有部门在部门例会上共识目标,跟踪进度,反馈问题,协同工作的时候,这套机制就算正常运转起来了。这样能保证整体目标的最大化落地,也能提醒各小组关键任务是什么——不要被自己一亩三分地发生的破事淹没了。
看完了,很多同学说:这一套方法论和增长黑客看起来很像呀。是滴,所谓增长黑客,其实也是一种统一协调各部门,为“增长”服务的办法。所以方法思路是很类似的。只可惜和数据运营一样,也被很多公司用歪了。
类似的,大家在做具体工作的时候,也不必要因为眼前公司的种种举动而怀疑人生——有可能就是你的公司水平太低而已。关键是多理解一个业务的本质,站在对业务有利的角度思考,多去理解业务部门同事真实处境与出发点,不要被玄乎的概念带着走。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27