
Python是一款使用方便,易上手的工具,我们平常在工作中经常会用到,而且同时也是一款功能强大的编程语言,被广泛应用于数据分析、web开发、人工智能等行业。但是无论那个行业,哪个领域,想要熟练使用Python,就必须掌握Python的基础知识。
以下文章来源于:微信公众号Python猫
作者: 豌豆花下猫
从接触 Python 时起,我就觉得 Python 的元组解包(unpacking)挺有意思,非常简洁好用。
最显而易见的例子就是多重赋值,即在一条语句中同时给多个变量赋值:
>>> x, y = 1, 2 >>> print(x, y) # 结果:1 2
在此例中,赋值操作符“=”号的右侧的两个数字会被存入到一个元组中,即变成 (1,2),然后再被解包,依次赋值给“=”号左侧的两个变量。
如果我们直接写x = 1,2 ,然后打印出 x,或者在“=”号右侧写成一个元组,就能证实到这一点:
>>> x = 1, 2 >>> print(x) # 结果:(1, 2) >>> x, y = (1, 2) >>> print(x, y) # 结果:1 2
一些博客或公众号文章在介绍到这个特性时,通常会顺着举一个例子,即基于两个变量,直接交换它们的值:
>>> x, y = 1, 2 >>> x, y = y, x >>> print(x, y) # 结果:2 1
一般而言,交换两个变量的操作需要引入第三个变量。道理很简单,如果要交换两个杯子中所装的水,自然会需要第三个容器作为中转。
然而,Python 的写法并不需要借助中间变量,它的形式就跟前面的解包赋值一样。正因为这个形式相似,很多人就误以为Python 的变量交换操作也是基于解包操作。
但是,事实是否如此呢?
我搜索了一番,发现有人试图回答过这个问题,但是他们的回答基本不够全面。(当然,有不少是错误的答案,还有更多人只是知其然,却从未想过要知其所以然)
先把本文的答案放出来吧:Python 的交换变量操作不完全基于解包操作,有时候是,有时候不是!
有没有觉得这个答案很神奇呢?是不是闻所未闻?!
到底怎么回事呢?先来看看标题中最简单的两个变量的情况,我们上dis 大杀器看看编译的字节码:
上图开了两个窗口,可以方便比较“a,b=b,a”与“a,b=1,2”的不同:
很明显,形式相似的两种写法实际上完成的操作并不相同。在交换变量的操作中,并没有装包和解包的步骤!
ROT_TWO 指令是 CPython 解释器实现的对于栈顶两个元素的快捷操作,改变它们指向的引用对象。
还有两个类似的指令是 ROT_THREE 和 ROT_FOUR,分别是快捷交换三和四个变量(摘自:ceval.c 文件,最新的 3.9 分支):
预定义的栈顶操作如下:
查看官方文档中对于这几个指令的解释,其中 ROT_FOUR 是 3.8 版本新加的:
ROT_TWO
Swaps the two top-most stack items.
ROT_THREE
Lifts second and third stack item one position up, moves top down to position three.
ROT_FOUR
Lifts second, third and forth stack items one position up, moves top down to position four.New in version 3.8.
CPython 应该是以为这几种变量的交换操作很常见,因此才提供了专门的优化指令。就像 [-5,256] 这些小整数被预先放到了整数池里一样。
对于更多变量的交换操作,实际上则会用到前面说的解包操作:
截图中的 BUILD_TUPLE 指令会将给定数量的栈顶元素创建成元组,然后被 UNPACK_SEQUENCE 指令解包,再依次赋值。
值得一提的是,此处之所以比前面的“a,b=1,2”多出一个 build 操作,是因为每个变量的 LOAD_FAST 需要先单独入栈,无法直接被组合成 LOAD_CONST 入栈。也就是说,“=”号右侧有变量时,不会出现前文中的 LOAD_CONST 一个元组的情况。
最后还有一个值得一提的细节,那几个指令是跟栈中元素的数量有关,而不是跟赋值语句中实际交换的变量数有关。看一个例子就明白了:
分析至此,你应该明白前文中的结论是怎么回事了吧?
我们稍微总结一下:
以上就是小编今天跟大家分享的python基础语句的一些内容了,希望对大家和使用python有帮助。任何学习都不是一蹴而就的,平时大家要注意多总结,多复盘,并结合实际项目去应用!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10