
这节我们来聊一下用户留存的话题,用户留存有多重要呢?“不留存,就去死”,听起来还是有点耸人听闻的对吧。说到留存,不得不先弄清楚用户画像,所谓“知己知彼,百战不殆!”
很多大佬们往往更关注留存这一环节,那么这一环节有什么奇妙的地方呢?由于这一章内容较多,小P给大家找到了思维导图方便大家理解:
首先,书中关于用户留存举了BranchOut的反例:从2012年1月开始,短短几个月时间里,BranchOut的总用户数增长到2500万,月活跃用户一度达到1400万,并且完成了C轮融资。就是这样一个看起来前景一片大好的社交网站,是怎么最后沦落到到处找买家贱卖的下场呢?
归根结底,就是没有注重用户的留存问题,团队把精力全部放在了用户获取上。其实这样的事情在国内我们也见过不少,很多app都有过声势浩大的阶段,但后来却逐渐消失在我们的视野中。我们去结合产品的“S”曲线就会发现,这类产品在当时巨大的用户增量面前,并不足以承担,并且很可能会对产品造成很大的负担,产品功能及各方面不够匹配这么大的用户量,一味的增长反而会加速产品走向下坡。其实,我们首先要认清一个公式:
净用户增长=新用户加入-老用户流失
这也就意味着我们的流失数最起码要与新用户数保持持平,才会实现增长。然而现实中,很多新人会被眼前的新用户数冲昏头脑,而忘记产品现有功能是否能满足大量用户基本使用需求以及是否能满足小众用户的特殊需求。所以,出现这些问题也就可以理解了。
我们再来定义下留存,女主说:衡量留存,我们推荐使用计算同一用户群不同时间的留存率(Retention rate)来绘制留存曲线(Retention curve),有时候也叫做进行同期群分析(Cohort Analysis)。简而言之,就是把同一时期加入的用户放在一起,横向追踪他们在接下来几个月、一年的时间里,是不是还持续使用这个产品,有多大比例流失了,在什么时间流失了,从而了解用户随时间变化的留存情况。在定义留存这个环节中,首先我们需要明确定义自己产品留存关键行为以及用户的天然使用周期,这样我们就可以着手绘制留存曲线图了。想要画出一个周留存曲线,只需以下四步:
1. 记录每一周首次完成关键行为的用户数,也就是激活用户数。
2. 追踪这些用户在接下来的每一周里继续完成关键行为的数量。
3. 通过前两步,计算每一周有关键行为的用户占首周激活用户数的百分比。
4. 把百分比数据画成曲线图,就是你的留存曲线了。
步骤4
那么,从这个留存曲线当中我们能看出什么呢?
横向观察时:用户的流失是不可避免的,但好的留存曲线应该是变得越来越平
纵向观察时:随着产品的改善,以及各种留存手段的帮助,后来加入的用户其留存曲线的
的斜率应该比之前加入的用户的平缓。
同样,用户留存周期也是分阶段的。
1. 新用户激活阶段:包括新用户的注册、激活流程和整体的新用户体验。这一阶段的主要目标是帮助新用户上手,快速发现产品达到Aha时刻。
2. 中期留存阶段:是指用户完成了首次关键行为之后继续熟系产品,发现更多的价值。主要目标是帮助用户形成使用习惯。
3. 长期留存阶段:这时用户对产品的使用已经非常熟悉,主要目标是让用户经常回来使用产品,感受到产品的核心价值,避免用户的流失。
4. 流失用户阶段:这一阶段是针对已经流失的用户,主要目标是让用户重新发现产品价值,唤回用户。
不同阶段,目标也不同。把握住留存的各个阶段,实操起来才会更轻松。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29