京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | Joos Korstanje
译者 | ronghuaiyang
长期以来,“R, Python, SQL和机器学习”一直是数据科学家的标准工作描述。但随着该领域的发展,这已不足以在就业市场上保持竞争力。
更新你的技能,为2020年数据就业市场准备!
数据科学是一个竞争激烈的领域,人们正在迅速积累越来越多的技能和经验。这导致了机器学习工程师的工作描述越来越丰富,因此我对2020年的建议是,所有的数据科学家也需要成为开发人员。
为了保持竞争力,你一定要为新工具带来的新工作方式做好准备。
敏捷是一种组织工作的方法,已经被开发团队大量使用。数据科学的角色越来越多地由那些最初的技能是纯软件开发的人来扮演,这就产生了机器学习工程师的角色。
越来越多的数据科学家/机器学习工程师被管理为开发人员:不断地改进现有代码库中的机器学习元素。
对于这种类型的角色,数据科学家必须了解基于Scrum方法的敏捷工作方式。它为不同的人定义了几个角色,这个角色定义确保了持续的改进和顺利地实现。
Git和Github是为开发人员提供的软件,在管理不同版本的软件时非常有用。它们跟踪对代码库所做的所有更改,此外,当多个开发人员在同一时间对同一项目进行更改时,它们还为协助提供了真正的便利。
随着数据科学家的角色变得越来越偏重于开发,使用这些开发工具就成为了关键。Git正在成为一种重要的工作需求,要适应使用Git的最佳实践需要一定的时间。当你独自一人或与他人合作时,很容易开始使用Git,但是当你加入一个有Git专家的团队,而你仍然是一个新手时,你可能会比想象的更加困难。
数据科学也在改变的是我们思考项目的方式。数据科学家仍然是用机器学习回答业务问题的人,一如既往。但是,越来越多的数据科学项目是为生产系统开发的,例如作为大型软件中的微服务。
与此同时,高级模型的CPU和RAM消耗越来越大,特别是在处理神经网络和深度学习时。
对于数据科学家的工作描述,不仅要考虑模型的准确性,还要考虑项目的执行时间或其他工业化方面,这一点变得越来越重要。
虽然机器学习的工业化正成为数据科学家的一个严重的约束,但它也成为数据工程师和IT的一个严重约束。
当数据科学家可以致力于减少模型所需的时间时,IT人员可以通过改变速度更快的计算服务来做出贡献,这些计算服务通常可以通过以下一种或两种方式获得:
最近,数据科学家仍然认为NLP和图像识别仅仅是数据科学的专门化,并不是所有人都必须掌握。
但是,即使在“常规”业务中,图像分类和NLP的用例也越来越频繁。在当今时代,至少对这些模型没有基本的了解是不可接受的。
即使你在工作中没有此类模型的直接应用,也可以很容易地找到实际操作的项目,并使你能够理解图像和文本项目中所需的步骤。
祝你好运,同时提高你的技能,不要犹豫,保持警惕,一直在学习。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27