
作者|skura
来源|AI开发者
python 就像一件艺术珍藏品!
python 最大的优点之一是它可以广泛地选择模块和包。它们将 python 的功能扩展到许多流行的领域,包括机器学习、数据科学、web 开发、前端等等。其中最好的一个优点是 python 的内置 collections 模块。
在一般意义上,python 中的集合是用于存储数据集合(如 list、dict、tuple 和 set)的容器。这些容器直接构建在 python 中,可以直接调用。collections 模块提供额外的高性能数据类型,这些数据类型可以提高代码的性能。
让我们浏览一下 collections 模块最流行的数据类型以及如何使用它们吧!
1.counter
counter 是 dictionary 对象的一个子类。collections 模块中的 counter()函数接受 iterable,例如 list 或 tuple,并返回计数器字典。字典的键将是 iterable 的唯一元素,每个键的值将是 iterable 中元素的计数。
作为开始,让我们从集合导入计数器数据类型:
from collections import Counter
若要创建计数器对象,请将其分配给变量,这和任何其他对象类是一样的。你唯一想传给它的参数就是你的变量。
lst = [1, 2, 3, 3, 2, 1, 1, 1, 2, 2, 3, 1, 2, 1, 1]
counter = Counter(lst)
如果我们在对象 print(counter)周围使用一个简单的 print 函数来打印计数器,我们会得到一个看起来有点像字典的东西:
Counter({1: 7, 2: 5, 3: 3})
你可以使用其 key 访问任何计数器项,如下所示。这与从标准 python 字典中提取元素的方法完全相同。
lst = [1, 2, 3, 3, 2, 1, 1, 1, 2, 2, 3, 1, 2, 1, 1]
counter = Counter(lst)
print(counter[1])
most_common() 函数
到目前为止,计数器对象最有用的函数是 most_common() 函数。当它应用于计数器对象时,它返回 n 个最常见元素及其计数的列表,按从最常见到最少见的顺序排列。
lst = [1, 2, 3, 3, 2, 1, 1, 1, 2, 2, 3, 1, 2, 1, 1]
counter = Counter(lst)
print(counter.most_common(2))
上面的代码打印出以下元组列表:
[(1,7),(2,5)]
每个元组的第一个元素是列表中唯一的项,每个元组的第二个元素是计数。这是一种简单快捷的方法,比如「获取列表中最常见的前 3 个元素及其计数」。
要了解更多有关计数器功能的信息,请查看官方文档。
2.defaultdict
该函数的工作原理与普通的 python 字典完全相同,额外的好处是当你试图访问一个不存在的键时,它不会抛出错误。
相反,它使用默认值初始化 key。默认值是根据创建 DefaultDict 对象时作为参数传递的数据类型自动设置的。以下面的代码为例。
from collections import defaultdict
names_dict = defaultdict(int)
names_dict["Bob"] = 1
names_dict["Katie"] = 2
sara_number = names_dict["Sara"]
print(names_dict)
在上面的示例中,int 作为默认值传递给 defaultdict 对象。接下来,为每个键定义值,为键「bob」和「katie」定义数值。但在最后一行,我们试图访问一个尚未定义的 key,即「sara」。
在普通字典中,这会抛出一个错误。但是使用 defaultdict,一个新的 key 会自动初始化为「sara」,值为 0,对应于我们的 int 数据类型。因此,最后一行打印出一个包含所有 3 个名称和相应值的字典。
defaultdict(<class'int'>,{'bob':1,'katie':2,'sara':0})
如果我们用一个类似于这个名称的列表初始化 defaultdict,那么「sara」将用一个空列表 [] 初始化,代码将输出以下内容:
defaultdict(<class'int'>,{'bob':1,'katie':2,'sara':[]})
要了解更多有关 DefaultDict 功能的信息,请查看官方文档。
3.deque
队列是计算机科学中遵循先进先出(fifo)原则的基本数据结构。简单地说,这意味着添加到队列中的第一个对象也必须是要删除的第一个对象。我们只能在队列前面插入内容,只能从后面删除内容——队列中间不能执行任何操作。collections 库的 deque 实现了该功能的优化版本。该实现的一个关键特性是保持队列大小,即如果将队列的最大大小设置为 10,则 deque 将根据 fifo 原则添加和删除元素,以保持最大大小为 10。这是目前为止 python 中队列的最佳实现。
让我们从下面这个例子开始吧。我们要创建一个 deque 对象,然后用从 1 到 10 的整数初始化它。
from collections import deque
my_queue = deque(maxlen=10)
for i in range(10):
my_queue.append(i+1)
print(my_queue)
在上面的代码中,我们首先初始化了我们的 deque,指定我们希望它始终保持最大的长度 10。其次,我们通过循环将值插入到队列中。请注意,填充队列的功能与使用常规 python 列表完全相同。最后,我们打印出结果。
deque([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], maxlen=10)
因为我们的队列有一个 maxlen=10,并且我们的循环添加了 10 个元素,所以我们的队列包含从 1 到 10 的所有数字。现在让我们看看当我们增加更多的数字时会发生什么。
for i in range(10, 15):
my_queue.append(i+1)
print(my_queue)
上面的代码中,我们向队列中添加了另外 5 个元素,即从 11 到 15 的数字。但是我们的队列只有 maxlen=10,所以它必须删除一些元素。由于队列必须遵循 fifo 原则,因此它会删除插入队列的前 5 个元素,正是按照它们的插入顺序:[1、2、3、4、5]。print 语句的结果如下:
deque([6, 7, 8, 9, 10, 11, 12, 13, 14, 15], maxlen=10)
要了解更多有关 deque 的信息,请查看官方文档。
4.namedtuple
在 python 中创建常规元组时,其元素是通用的和未命名的。这迫使你记住每个元组元素的确切索引。namedtuple 就是这个问题的解决方案。
namedtuple()返回一个元组,该元组中每个位置的名称都是固定的,而 namedtuple 对象的名称是通用的。要使用 namedtuple,首先为它创建一个模板。下面的代码创建一个名为「person」的 namedtuple 模板,该模板具有「name」、「age」和「job」参数。
from collections import namedtuple
Person = namedtuple('Person', 'name age job')
创建模板后,可以使用它创建 namedtuple 对象。让我们为 2 个 person 创建 2 个 namedtuple 并打印出他们的表示。
Person = namedtuple('Person', 'name age job')
Mike = Person(name='Mike', age=30, job='Data Scientist')
Kate = Person(name="Kate", age=28, job='Project Manager')
print(Mike)
print(Kate)
上面的代码非常直截了当——我们用 namedtuple 模板的所有属性初始化一个「person」。上面的打印语句将给出以下结果:
Person(name='Mike', age=30, job='Data Scientist')
Person(name='Kate', age=28, job='Project Manager')
因此,namedtuples 允许更大的易用性、可读性和更容易组织元组对象。
要了解 namedtuple 的更多功能,请查看官方文档。
最后
好了,你学完这些啦!接下来你可以使用 collections 库使用 python 中的高性能数据类型了~如果你渴望更多,别担心!在 python 集合中还有很多东西需要学习,你还需要学习如何最有效地使用它们。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01