京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | Deer
来源 | 数据和云
你的事业做了十年,一直不温不火?为什么公司不提拔你提拔别人?为什么公司转型到新技术上而你对新技术一无所知?为什么公司走下坡路,你是第一波被开掉的员工?
35岁,而立之年,正是风华正茂时,但是很多人进入这个年龄后,都面临着上面列举的一些问题,而且越来越会感觉事业危机重重。更是有很多人认为,数据库从业者吃的是青春饭,认为要调整方向去做管理岗位的工作。但真的是这样吗?
我们参考当前网上比较有代表性的数据库从业者的回答,整理出了35岁数据库从业者的压力。
1、35岁的数据库从业者拥有足够的资历与经验,同时,工资也随之上涨。但是企业中很多岗位拥有3-5年精力的青年人照样可以胜任,转管理层的名额有限。造成了既有多年行业经验,但经验的程度又可以被取代的中年人尴尬。
2、过了35岁的数据库从业者在工作上大部分分为2个方向,管理岗位以及数据库基础岗位。前者主导着公司的发展,后者面临着被年轻者取代的压力。尤其是在同龄人都转去做管理者时,不免感觉到压力和彷徨。
3、体力与精力不如一些年轻人。而且,更有一些精力转移到了家庭上,不能为工作付出全部精力。
4、数据库技术更新换代速度太快, 大龄数据库从业者跟不上脚步去学习。
5、生活压力:大部分上有老下有小,还会有房贷和车贷压力。
相信很多数据库从业者都会被这些问题困扰,会产生很多的焦虑。但是,35岁并不是一个特殊的年龄。没有什么事是一定要在35岁之前做完的,35岁照样可以按照之前的路一直走下去,不一定非要调整方向去做管理岗位的工作,也可以做之前一直从事的岗位。过去的工作经历应该是用来丰富你的,而不该成为以后的负担。
余秋雨说:中年是对青年的延伸,又是对青年的告别。这种告别不仅仅是一系列观念的变异,而是一个终于自立的成熟者对于能够随心所欲处置各种问题的自信。
一个人从22岁毕业开始工作,到60岁退休,35岁正当年。这个年龄阶段,正是公司的中流砥柱,既有经验,又有精力。按照这样的推论,并没有所谓的35岁中年危机。因为这些压力都是自己给自己的。
人要在任何年龄、任何时刻,都要有勇气改变自己,正视压力,并努力解决。
那么,35岁的数据库从业者该如何应对压力?
35岁的数据库从业者拥有足够的资历与经验,同时,工资也随之上涨。但是企业中很多岗位拥有3-5年精力的青年人照样可以胜任,转管理层的名额有限。造成了既有多年行业经验,但经验的程度又可以被取代的中年人尴尬。
数据库从业者从事的岗位并不是一个容易被容易取代的职业。
数据库是一个非常需要积累的领域,需要长期专注的投入,很多理论或者实践都是几十年一直延续下来。最近一些年,国内的数据库圈发展很快,但是无论是人才的数量还是经验的传承,都是靠时间以及一批又一批人的努力才能弥补。所以,数据库领域比一般业务软件更需要积累和沉淀。而且在BOSS、智联招聘上有很多公司,需要的都是有时间累积经验的数据库从业者,年龄也不作为考量的因素。所以35岁+的数据库从业者有着长期专注的投入,且又有着足够的经历,并不容易被取代!
过了35岁的数据库从业者在工作上大部分分为2个方向,管理岗位以及数据库基础岗位。前者主导着公司的发展,后者面临着被年轻者取代的压力。尤其是在同龄人都转去做管理者时,不免感觉到压力和彷徨。
35岁照样可以做DBA、开发人员,一切都是基于自己的选择。
在 InfoQ 社区,有很多程序员都是一直走在编程的道路上。有从创业团队技术总监不断学习进入阿里现在已经是高级技术专家的;有从毕业就踏上软件行业从一个普通工程师成长为高级工程师、架构师、大数据工程师,热衷于学习新技术抽空还能翻译技术书籍的 。所以,保持初心,砥砺前行,不管什么样的岗位都可以做到极致!
体力与精力不如一些年轻人,而且,更有一些精力转移到了家庭上,不能为工作付出全部精力。
35岁的数据库从业者虽然体力与精力不如一些年轻人,但是有足够的资历与经验。
有很多技术专家都是30好几还在写程序。像微软的底层的员工都是四五十岁的样子,但他们依然能够站在整个行业的前端。
数据库技术更新换代速度太快, 大龄数据库从业者跟不上脚步去学习。
这个论点本身就是站不住脚的,因为不管是初入行的青年人,还是入行十年的经验丰富的数据库从业者,都需要紧跟时代的发展,不断成长学习。否则如果一直原地踏步,肯定会被后来者居上,然后淘汰。所以,这一点构不成压力,当然,如果不成长学习的话,肯定是有压力,但是这是自身需要思考的问题。
举个例子:德国西比希城的约翰娜.玛克司经过长达六年的刻苦攻读,以优异的成绩获得了科隆大学的教育学硕士学位。而之前,她只是一个普通的小职员,博士毕业后,登上了迪沃累克的脱口秀,成了德国家喻户晓的人物,在80岁迎来了人生的巅峰。一个年龄70多岁的老太太,都在不断的努力提升自己,而在壮年的我们,为什么不能呢?所以不管任何时间,都需要努力紧跟时代的发展,努力学习,不然,肯定会被后来者居上。
所以,只要持续不断的成长,在数据库行业就是没有年龄限制的,也不会到了35岁就会产生压力,因为在这个行业,我们在不断进步,且永远年轻!
35岁的数据库从业者该如何面向未来呢?
1、主动学习能力。对新的东西充满了好奇和疑问,想办法去了解学习。
2、主动离开自己的舒适区,主动拥抱新的项目机会。对于熟悉的事情,自己有足够的掌控能力;面临新的项目,要勇于开拓,做好项目的每一件“小事情”。
3、善于把能力,经验,资源,迁移到新的项目当中。
4、自己做的事情要有激情,乐此不彼的想尽一切办法做好它。不断创新,不断优化做到极致。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01