
来源 | 网络大数据
近期,一篇“90后超一半网贷”的文章引起了网络热议。看似90后的收入无法支撑他们的超前消费,然而,20多岁的90后真的比奔四的80后负债更多吗?
就此,我们抽取了苏宁金融400万个1980-1999年出生的贷款申请人作为分析样本,从多种征信数据维度来比较80后和90后的真实负债情况。
绝对负债80后更多
首先,根据人行征信报告的信贷交易明细,我们可以统计申请人不同类型的贷款个数、合同金额、未还余额等信息,贷款个数越多、余额数目越大,表示负债越重。
从上面这组数据来看,80后比90后要背负更重的债务,80后的平均贷款总余额是90后的2.15倍。
不过,两个群体的未结清贷款笔数接近,说明90后使用小额借贷产品更多。
可能你会想大多数80后都成家并买房了,会不会是房贷拉高了80后的平均欠款额?毕竟房贷一般金额较大,购房更像投资而不是普通消费。
下面,剔除房贷后再做比较。
在剔除了房贷余额之后,80后、90后的平均贷款总余额差距不仅没有变小,反而更大了,从2.15倍增加到2.51倍。
也就是说,房贷并不是造成80后负债高于90后的主要原因。真正的原因在于,80后收入相对更高,金融机构给的贷款额度更大,造成了两个群体的贷款余额差异。
90后信用卡透支比例更高
再看信用卡,作为生活中最常见也是最重要的信贷产品之一,信用卡的使用习惯能够在一定程度上体现个人的负债情况。
从绝对金额来看,80后的信用卡当前欠款额(6.73万元),差不多是90后信用卡当前欠款额(3.36万元)的2倍,主要原因在于80后工作更久,整体收入更高,银行给予他们的信用额度通常高于给90后的,因此信用卡额度使用率可能更能反映问题。数据告诉我们,90后似乎比80后更爱透支信用卡,但两个群体在这个指标上的差异并不大。
每月应还款额:80后压力山大
结合贷款和信用卡的欠款情况,可以推算出80后的人均欠款金额达到21.98万元,90后的人均欠款金额为10.45万元。2018年统计局给出的人均可支配收入为2.82万元,也就是说80后的欠款相当于他们7.8年的收入,而90后则需要3.7年的收入才可以还清欠款。
考虑到贷款多是按月分期还款,信用卡也支持账单分期,我们进一步统计了贷款和信用卡的平均每月应还款金额,可以看到,80后的贷款每月应还款金额为0.63万元,显著高于人均可支配月收入(0.24万元),90后的贷款每月应还款金额为0.28万元,相对来说是一个可以承担的数字。
相比贷款,80后和90后的最大问题在于如何按月准时还款信用卡?即便考虑到年轻人懂得合理利用信用卡的免息期,真实负债没有纸面上那么高,但数万元的月均信用卡还款额对于大多数80后90后来说并不轻松。
资金紧张程度半斤八两
个人申请新贷款和信用卡的次数,可以反映其资金紧张程度,体现在征信报告中的是报告查询记录。金融机构在审批贷款和信用卡的时候,会查询申请人的征信报告来评估风险,也就是说,查询次数和机构数越多,说明用户对资金的渴望越迫切。
人行征信报告显示,80后和90后申请贷款的次数非常接近,在信用卡申请上似乎80后比90后更积极,近2年的平均申请次数多了1.7次。
需要指出的是,80后和90后在互联网征信数据中的信贷申请机构基本相同,至少说明两个群体对网贷的需求量在同一水平。
贷款逾期次数,90后略高一筹
信贷逾期次数可以直接反映个人的还款意愿和履约能力,人行征信报告的数据表明,80后的贷款逾期次数要少于90后,但是信用卡逾期次数则高于90后。
考虑到80后平均拥有的信用卡张数要高于90后,所以发生过逾期的信用卡占比这个指标,两个群体相差不大。而90后贷款次数更少、逾期次数却更多,这一点值得注意。
总结
下面,用一张图总结本文:从人行征信报告体现的信息来看,80后欠款金额较高导致其每月还款压力更大,90后在信用卡透支率和违约次数上都要高于80后,而两个群体的资金紧张程度不相上下。
最后老生常谈,贷款还是要选择持牌机构的正规产品,不追求超前消费,年轻人透支信用就是透支未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15