
作者 | 挖数
香港位于广东深圳的南边,面积是1106平方公里,比中国的四大一线城市都小。
不仅面积小,其人口密度也大,香港每平方公里的人口数比四大一线城市都多。
看起来好像跟深圳差不多,实际大不相同。
香港境内山多平地少,是一座受到海水淹没的多山地体,如果计算建设用地面积的话,香港仅有19%的面积可以开发,而这个比例深圳是50%。
因此换算成实际可建设面积的话,香港是35595人/平方公里,深圳是13046人/平方公里,这个差距就拉开了。
香港分3个区,分别是香港岛、九龙和新界。
再拆分成小的区域:
香港岛:中西区、东区、南区、湾仔区;
九龙:九龙城区、深水埗区、油尖旺区、黄大仙区、观塘区;
新界:北区、西贡区、沙田区、大埔区、离岛区、葵青区、荃湾区、屯门区、元朗区。
其中香港岛的中西区是整个香港的中央商务区(CBD),是最多商业办公楼和娱乐场所聚集的地方,中环就位于该区。
查询地产公司的数据,以中西区的 上环/中环/金钟 这一带为例,在售的二手房中最贵的一套是——
总价2.2亿港币,香港的房子是以尺为单位,1尺大约等于0.093平方米,这里的1702尺换算成平方米的话是158平方米,一平方米是139万港币,也就是122万人民币。
这套是可以望见维多利亚港的,是真正港人口中的“千尺豪宅”。
当然这种上亿的房子属于稀缺物种,该区域更多的房子总价在500-2500万港币之间。
看了一下500-600万港币这一区间房子的实用面积,都在30平方米以下。
在该区域随机选取5套房子,取他们的均价,大概在21万人民币/平方米左右。(这里取的建筑面积)
用以上方式计算整个香港岛的房子均价:
九龙的均价是:
新界的均价是:
以上数据可以看出,香港的房子真的很贵,最贵的尖沙咀一平方米要22万人民币,最便宜的离岛区也要9.4万人民币。
贵不贵跟深圳对比一下就知道,深圳福田和南山的房子大概在6-15万/平方米,比较远的宝安区的沙井在4-6万/平方米,这样看香港房价大约是深圳的2倍。
按照香港2018年17500元港币的月工资中位数,普通人要不吃不喝29年才能买得起一套总价600万港币,实用面积在30平方米以下的房子。
通过地产公司的城市指数可以看到,香港的房价从2004年开始一路飙涨
众观历史,整个香港的楼市大概经历了 7轮 上涨。
第1轮上涨:1945-1950年
战争期间,国内很多中产阶级、资产家带着家属纷纷涌入香港,短短三四年间,香港的人口从50万暴涨到200万。
很多房屋在战争中受损,香港住房问题出现从未有过的紧张,稀缺的住房带动了房价的急剧上涨。
第2轮上涨:1953-1958年
1953年,香港得益于港口的地域优势,经济开始复苏,一些企业家比如霍英东等创造了“分层出售”和“分期付款”这一史无前例的销售模式,将房屋买卖的主体由之前大公司整栋购买,变成个人分层分户购买。
从此房屋交易量暴增,“炒楼花”一词第一次出现在香港人的视线。
第3轮上涨:1960-1965年
这一时期,亚洲地区快速发展,香港作为“四小龙”之首,工业化快速推进,国际资本纷纷涌入香港,香港进入制造业的黄金时期。
随之而来的是楼市再次繁荣,地价房价齐上涨。
第4轮上涨:1968-1973年
1968年,在政府主导下,香港产业结构开始转型,由制造业转向金融和商贸业,GDP快速增长,每年都超过10%,被称为香港奇迹。
以李嘉诚为代表的制造业巨头纷纷转型房地产,长江实业、新鸿基、新世界等地产公司开始跑马圈地,大量热钱快速流入香港,不仅楼市狂飙,股市也从200多点一路上涨到最高的1774点。
第5轮上涨:1976-1981年
这一时期,香港实行了一系列优惠政策,比如资金自由往来、税费减免等,一大批国际金融机构和世界500强公司纷纷进驻,现代金融中心的定位也被首次提出,同时期香港的人口也突破了500万。
长江实业、新鸿基、新世界地产等巨头纷纷上市,李嘉诚、郑裕彤等成为了身家上百亿的富豪,楼市也在各种造富神话中进一步上升。
第6轮上涨:1985-1997年
这个时期,港币随着美元贬值,银行利率大幅降低,楼市被极大地刺激起来,加上很多香港人预期回归后大陆的富人会涌入香港,到时房价会被托上天,不买房就是傻子。
于是10年间香港房价涨幅超过6倍,基本每个月都涨10%,大家都无心工作,心思都在房子上,每天见面聊的最多的是谁家物业这个月又涨多少,谁谁通过炒楼赚了千万身家。
第7轮上涨:2004年至今
这段时期,香港停止了廉价房屋计划,并逐年压缩商品房的土地供应,与稀少的供应端相比,香港本地居民突破750万,需求端越来越旺盛。
随着2006年香港推出优才入境计划,吸引外地人来港定居,大陆的各路科技新贵、私企老板、体育明星、演员艺人等纷纷涌入香港购置物业,推动了楼市的新一轮上涨。
香港楼市的每一次上涨都伴随着下跌,但大趋势还是一直往上的,房价如此高企,出现劏房、棺材房、笼屋之类的也就见怪不怪了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29