京公网安备 11010802034615号
经营许可证编号:京B2-20210330
01 前言
在日常的生活中,大家偶尔会看到朋友圈发的照片由一张被切成九张的效果,有时由一张照片被切成九张照片所带来的视觉盛宴是不一样的!
现在许多 P 图工具里面自带了这种功能,而微信小程序里也有专门可以切图的工具。为了熟练巩固的练习调库操作,今天就来带大家看看,如何用 Python 实现这个小功能。
02 成果展示
先来看看成果,原图为文章开始的图片,一图切九图朋友圈:
九张图发朋友圈的时候,还有个比较有意思的事,上传时是乱序的,还需要你自己像玩拼图一样自己摆位置。
03 思路讲解
这个小功能的实现利用了 Python 中的一个图形处理库,Pillow。
Pillow是由从著名的Python图像处理库PIL发展出来的一个分支,通过Pillow可以实现图像压缩和图像处理等各种操作。
1pip install pillow # 安装 pillow 库
大体实现思路以下几步:
04 代码讲解
按照上面的思路,写出代码:
1. 填充原图形的背景,生成大正方形图
1def fill_images(image):
2 """ 填充正方形白色背景图片 """
3 width, height = image.size # 获取图片的宽高
4 side = max(width, height) # 对比宽和高哪个大
6 # 新生成的图片是正方形的,边长取大的,背景设置白色
7 new_image = Image.new(image.mode, (side, side), color='white')
9 # 根据尺寸不同,将原图片放入新建的空白图片中部
10 if width > height:
11 new_image.paste(image, (0, int((side - height) / 2)))
12 else:
13 new_image.paste(image, (int((side - width) / 2), 0))
14 return new_image
代码中的顺序,可以理解为下面几个图形,首先在原有的照片基础上覆盖上白色背景:
其次,比较宽和高的生成规则是下面两个图,我们可以将背景调成黑色,便于观察,当宽大于高的像素时,你的照片就是横着铺满正方形的,而背景图填充上下,黑色背景是不是有股电影大片的气息:
当高大于宽的像素时,你的照片就是竖着铺满正方形的,而背景图填充左右:
第一步到这里就完成了,你得到的就是一张被背景颜色填满的正方形。
2. 对大正方形进行切割
1def cut_images(image):
2 """ 切割大正方形图 """
3 width, height = image.size
4 one_third_width = int(width / 3) # 三分之一正方形线像素
6 # 保存每一个小切图的区域
7 box_list =
9 """
10 切图区域是矩形,位置由对角线的两个点(左上,右下)确定,
11 而 crop 实际要传入四个参数(left, upper, right, lower)
12 """
13 for x in range(3):
14 for y in range(3):
15 left = x * one_third_width # 左像素
16 upper = y * one_third_width # 上像素
17 right = (x + 1) * one_third_width # 右像素
18 lower = (y + 1# 下像素
19 box = (left, upper, right, lower)
20 box_list.append(box)
21 image_list = [image.crop(box) for box in box_list]
22 return image_list
首先定位三分线:
根据左上,右下两个像素点的位置,确定新的图形:
最后将每个小正方形的左上和右下像素点进行存储,以元组的形式写到list中,在调用 crop 函数进行图像复制。关于 crop 函数,官方文档:
3. 存储切割后的9张图片(不放代码了,比较简单)
05 总结
Pillow 库对图像处理操作支持非常友好,而本次的小工具核心就在于如果进行对原有图片进行切割。内嵌两次循环来逐行遍历,双重遍历的思想会经常用到,这块可以注意下。
当然如果要是嫌源代码运行麻烦,可以打成 exe 文件来使用哟。这下又可以在朋友圈秀操作了!(比如改改背景呀,黑色背景什么的。)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27