
从前两天开始,各省市关于高考成绩放榜和各批次录取分数线都陆续出炉,教育部也发布了最新的全国高等学校名单。
于是乎,所谓的野鸡大学也就无处躲藏了。
也给广大的高考生在填报志愿的时候,提供了一个参考。
当然本次不讨论这个...
最新发布的名单没有本科院校的数量,于是小F找了2018年的数据。
1243所本科院校,和本次获取到的数据「1281个」基本差不多。
下面展示一下数据。
包含了专业名称,开设此专业的院校数量,及每年的就业率,最后是每年毕业生数量。
5万多条院校开通专业的数据,涵盖11大类,582个专业,1281个本科院校。
接下来就来分析一波,先对学科进行分组。
from wordcloud import WordCloud, ImageColorGenerator
import matplotlib.pyplot as plt
import pandas as pd
import jieba
# 设置列名与数据对齐
pd.set_option('display.unicode.ambiguous_as_wide', True)
pd.set_option('display.unicode.east_asian_width', True)
# 显示15行
pd.set_option('display.max_rows', 15)
# 读取数据
df = pd.read_csv('message.csv', encoding='gbk', header=None, names=['subject', 'major', 'school'])
# 学科分类
df_subject = df.groupby('subject').count.reset_index.sort_values(by='school')
print(df_subject)
# 获取列表数据
list1, list2 = ,
for i in df_subject['subject']:
list1.append(i)
for j in df_subject['school']:
list2.append(j)
print(list1)
print(list2)
获得数据如下:
利用获取的两个列表数据进行可视化。
这里「工学」位居第一,也和当下时代的发展相契合。
传统点的就是工业4.0,智能点的就是人工智能。
无不和「工学」息息相关。
接下来对专业进行分析。
# 专业分类
df_major = df.groupby('major').count.reset_index.sort_values(by='school')
print(df_major)
# 获取列表数据
list1, list2 = ,
for i in df_major['major'][-10:]:
list1.append(i)
print(list1)
for j in df_major['school'][-10:]:
list2.append(j)
print(list2)
得到结果如下:
专业TOP10出炉,也能以供参考。
照例还是使用现成的模板,方便多了...
最终结果如下。
开设英语的本科院校达到了1001所,接近院校总数的80%了。
不过网上对英语的评价就是:英语==失业。
所以对于英语专业,需要慎重考虑。
尾随其后的是计算机科学与技术,目前的大热门。
当然是不是修电脑我就不清楚了,相信关注小F公众号的小伙伴们,都能感受到计算机的魅力。
令人失望的是,小F就读的大机械居然没上榜,惭愧呀。
想当初「机械机械,压倒一切」,真不是瞎吹的。
一入机械深似海,从此妹子是路人。
这句也不假,说多了都是泪~
下面统计院校总数,并获取校名包含学院的院校数量。
# 对学校进行分组
df_name = df.groupby('school').count.reset_index.sort_values(by='subject')
print(df_name)
# 输出包含学院的校名
print(df_name[df_name['school'].str.contains('学院')])
得到院校总数以及哪所学校的专业最多:
嗯,1281所本科院校。
其中贵州大学以164个本科专业位居榜首。
接下来看一下校名包含学院的学校有多少所。
829所,占比64.7%,那么剩下的差不多都是大学了。
学院变大学(校名),这也是每年好多高校一直在做的事情。
毕竟一个霸气的校名,也能吸引不少考生报名。
最后生成一个校名词云图。
其中需要去掉「大学」和「学院」这两个关键词。
def create_wordcloud(df):
"""
生成校名词云
"""
# 分词
text = ''
for line in df['name']:
text += ' '.join(jieba.cut(line, cut_all=False))
text += ' '
backgroud_Image = plt.imread('school.jpg')
wc = WordCloud(
background_color='white',
mask=backgroud_Image,
font_path='C:WindowsFonts华康俪金黑W8.TTF',
max_words=1000,
max_font_size=150,
min_font_size=15,
prefer_horizontal=1,
random_state=50,
)
wc.generate_from_text(text)
img_colors = ImageColorGenerator(backgroud_Image)
wc.recolor(color_func=img_colors)
# 看看词频高的有哪些
process_word = WordCloud.process_text(wc, text)
sort = sorted(process_word.items, key=lambda e: e[1], reverse=True)
print(sort[:50])
plt.imshow(wc)
plt.axis('off')
wc.to_file("校名词云.jpg")
print('生成词云成功!')
# 去除大学
df_name = df_name['school'].str.replace('大学', '')
dict_name = {'name': df_name.values, 'numbers': df_name.index}
df_name = pd.DataFrame(dict_name)
# 去除学院
df_name = df_name['name'].str.replace('学院', '')
dict_name = {'name': df_name.values, 'numbers': df_name.index}
# 生成校名词云图
create_wordcloud(df_name)
得到结果如下:
师范和科技,妥妥的扛把子。
讲了半天,最后该如何选择呢?
当然是想去哪就去哪(分数高),冥冥之中,自有天意~
最后祝大家都能选到理想的大学和心仪的专业!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15