
从前两天开始,各省市关于高考成绩放榜和各批次录取分数线都陆续出炉,教育部也发布了最新的全国高等学校名单。
于是乎,所谓的野鸡大学也就无处躲藏了。
也给广大的高考生在填报志愿的时候,提供了一个参考。
当然本次不讨论这个...
最新发布的名单没有本科院校的数量,于是小F找了2018年的数据。
1243所本科院校,和本次获取到的数据「1281个」基本差不多。
下面展示一下数据。
包含了专业名称,开设此专业的院校数量,及每年的就业率,最后是每年毕业生数量。
5万多条院校开通专业的数据,涵盖11大类,582个专业,1281个本科院校。
接下来就来分析一波,先对学科进行分组。
from wordcloud import WordCloud, ImageColorGenerator
import matplotlib.pyplot as plt
import pandas as pd
import jieba
# 设置列名与数据对齐
pd.set_option('display.unicode.ambiguous_as_wide', True)
pd.set_option('display.unicode.east_asian_width', True)
# 显示15行
pd.set_option('display.max_rows', 15)
# 读取数据
df = pd.read_csv('message.csv', encoding='gbk', header=None, names=['subject', 'major', 'school'])
# 学科分类
df_subject = df.groupby('subject').count.reset_index.sort_values(by='school')
print(df_subject)
# 获取列表数据
list1, list2 = ,
for i in df_subject['subject']:
list1.append(i)
for j in df_subject['school']:
list2.append(j)
print(list1)
print(list2)
获得数据如下:
利用获取的两个列表数据进行可视化。
这里「工学」位居第一,也和当下时代的发展相契合。
传统点的就是工业4.0,智能点的就是人工智能。
无不和「工学」息息相关。
接下来对专业进行分析。
# 专业分类
df_major = df.groupby('major').count.reset_index.sort_values(by='school')
print(df_major)
# 获取列表数据
list1, list2 = ,
for i in df_major['major'][-10:]:
list1.append(i)
print(list1)
for j in df_major['school'][-10:]:
list2.append(j)
print(list2)
得到结果如下:
专业TOP10出炉,也能以供参考。
照例还是使用现成的模板,方便多了...
最终结果如下。
开设英语的本科院校达到了1001所,接近院校总数的80%了。
不过网上对英语的评价就是:英语==失业。
所以对于英语专业,需要慎重考虑。
尾随其后的是计算机科学与技术,目前的大热门。
当然是不是修电脑我就不清楚了,相信关注小F公众号的小伙伴们,都能感受到计算机的魅力。
令人失望的是,小F就读的大机械居然没上榜,惭愧呀。
想当初「机械机械,压倒一切」,真不是瞎吹的。
一入机械深似海,从此妹子是路人。
这句也不假,说多了都是泪~
下面统计院校总数,并获取校名包含学院的院校数量。
# 对学校进行分组
df_name = df.groupby('school').count.reset_index.sort_values(by='subject')
print(df_name)
# 输出包含学院的校名
print(df_name[df_name['school'].str.contains('学院')])
得到院校总数以及哪所学校的专业最多:
嗯,1281所本科院校。
其中贵州大学以164个本科专业位居榜首。
接下来看一下校名包含学院的学校有多少所。
829所,占比64.7%,那么剩下的差不多都是大学了。
学院变大学(校名),这也是每年好多高校一直在做的事情。
毕竟一个霸气的校名,也能吸引不少考生报名。
最后生成一个校名词云图。
其中需要去掉「大学」和「学院」这两个关键词。
def create_wordcloud(df):
"""
生成校名词云
"""
# 分词
text = ''
for line in df['name']:
text += ' '.join(jieba.cut(line, cut_all=False))
text += ' '
backgroud_Image = plt.imread('school.jpg')
wc = WordCloud(
background_color='white',
mask=backgroud_Image,
font_path='C:WindowsFonts华康俪金黑W8.TTF',
max_words=1000,
max_font_size=150,
min_font_size=15,
prefer_horizontal=1,
random_state=50,
)
wc.generate_from_text(text)
img_colors = ImageColorGenerator(backgroud_Image)
wc.recolor(color_func=img_colors)
# 看看词频高的有哪些
process_word = WordCloud.process_text(wc, text)
sort = sorted(process_word.items, key=lambda e: e[1], reverse=True)
print(sort[:50])
plt.imshow(wc)
plt.axis('off')
wc.to_file("校名词云.jpg")
print('生成词云成功!')
# 去除大学
df_name = df_name['school'].str.replace('大学', '')
dict_name = {'name': df_name.values, 'numbers': df_name.index}
df_name = pd.DataFrame(dict_name)
# 去除学院
df_name = df_name['name'].str.replace('学院', '')
dict_name = {'name': df_name.values, 'numbers': df_name.index}
# 生成校名词云图
create_wordcloud(df_name)
得到结果如下:
师范和科技,妥妥的扛把子。
讲了半天,最后该如何选择呢?
当然是想去哪就去哪(分数高),冥冥之中,自有天意~
最后祝大家都能选到理想的大学和心仪的专业!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28