京公网安备 11010802034615号
经营许可证编号:京B2-20210330
看一个地区的高考录取难度,通常会看其录取率,也就是当年高考录取人数/当年高考报考人数。
2018年中国各省录取率倒数前三的是这3个:
但大家都是80%以上,又不太能衡量一个地区的高考难度。
我们再看一下2018年中国各省 本科录取率 的倒数前三,一般来说这个比较能说明问题:
可以看到第一的河南将第二的甘肃远远甩开!
再看一下 一本录取率 的倒数前三:
再挖一下 985 和 211 的录取率,发现都是河南垫底
以上可以得出,河南是当之无愧的高考地狱模式之首。
僧多粥少是河南高考录取率低的原因
2018年高考报名人数最多的前三是
河南有接近100万人报考,整整比第二的广东多出23万人。
报考人数这么多,而河南的高校数量却没那么多。
2018年河南共有153所大学,包括71所本科院校和82所大专院校,这个数量在全国排在第四。
不仅如此,河南省内的重点大学还特别少,一所985大学都木有,仅有一所211就是郑州大学。
可能有人会问,那不考河南省内大学,考省外的不就好了?
你要知道,考入省外学校,可比考自己省内的学校难太多了!
我们国家的高校在每个省的招生人数都是提前计划好的,以清华大学为例,2017年清华在河南的招生人数是198人,而当年河南的高考报名人数是82.6万人,也就是说每个河南考生考上清华的概率是198/82.6万=0.024%,这个概率在全国31个省份中位列倒数第8。
而17年清华在北京的招生人数是296人,当年报考人数是6.06万人,人均概率高达0.488%,位居31个省市第1位。
北京考生的概率足足是河南考生的20.3倍!
我们再来看看其他省份,比如广东省首屈一指的高校中山大学,2017年中大在广东的招生人数是3202人,河南招生人数仅是212人。
广东考生考上中大的概率是0.439%,而河南考生考上中大的概率排在31个省的倒数第二,仅有0.026%,广东考生的概率是河南考生的16.8倍。
综上所述,本省学校不多且好学校极少,外省学校又特别难考,你说河南是不是高考录取率最低的省份,简直是炼狱模式的每年大考!
那么哪些省市是高考的easy模式呢?
毫无疑问是北京、上海、天津了,其中又以北京为首!
北京2017年仅有6万人报名参加高考,人数位居31个省的倒数第六,而北京的高校数量是92所,位居31个省的14名,但北京的211高校高达26所,位居31个省第1名,985高校8所,又是31个省第1名。
上海的话有211高校10所,31个省第3,985高校4所,31个省第2;
天津的211有3所,985有2所,虽然不多但胜在考生少,2017年仅有5万8千人,比北京还少。
不仅如此,北京、上海、天津考其他省的高校还容易!
以中山大学为例,2017年中大在北京的招生人数是296人,除以当年高考报考人数得出人均概率是0.074%,位居31个省第5名,天津第4名,上海第6名。
以清华大学为例,北京考生人均概率第一,上海第二,天津第三。
这也是北京户口那么值钱的原因之一,生在北京,子女的高考甚至人生轨迹瞬间切换到easy模式。
文末挖数根据2018年各省的本科以及211高校的录取率,将各省的高考难度可视化成这张图:
以上都是小编个人的见解和简单分析,不代表任何公众立场。高考录取率孰高孰低,都只是一个宏观数据,回归到个人,还是得看自己的实力和临场发挥。2019年高考即将拉开大幕,预祝天下所有的高考学子,有志者事竟成,考取自己理想的分数,考取自己梦寐的大学,开启人生全新美好的大学篇章!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16