京公网安备 11010802034615号
经营许可证编号:京B2-20210330
人工智能的火热格外吸引人们的眼光,我们在学习人工智能的时候还会接触到很多关于机器学习的相关知识。当然,我们在学习机器学习的时候需要对机器学习的学习有一个合理的安排,并且知道各个阶段机器学习的学习目标。在这篇文章中我们就给大家介绍一下机器学习的层次,希望这篇文章能够帮助到大家。
1.机器学习的层次
首先我们给大家介绍一下机器学习的层次,学习机器学习的结构化方法分为四个能力层次,分别是初学者、新手、中级、高级。这四个层次是根据他们面临的问题和他们拥有的学习目标来界定的。反过来,每个级别都有一套不同的活动来追求他们的目标。那么自学机器学习中每个层次面临的问题都是什么呢?
2.机器学习各个层次中容易出现的问题
初学者面临的问题有很多,主要的困惑是机器学习是什么。淹没于海量的信息之中。对所提供的大部分信息的中未明确假定的先验知识感到沮丧。其次我们就给大家说一下新手遇到的问题,那就是算法的数学描述所困扰。努力将机器学习应用到实际问题上,缺乏寻找问题的能力。而中级面对的方法就是对介绍性的材料感到无聊。渴望更多的细节和更深的想法。渴望展示并推动他们的知识和技能。高级面对的问题就是痴迷于从系统和解决方案中获得最大收益。寻求更大的贡献的机会。激发了突破界限的灵感。由此可见,我们都要注意好自己每一个层次的问题。
3.每个层次的学习目标
初学者的学习目标就是建立一个明确的基础,并准备开始进入这个领域。新手的学习目标就是应用机器学习的开发与实践。中级的学习目标就是深入了解算法,问题和工具。高级的学习目标就是拓展某个领域如算法,问题和工具等。
4.自学机器学习需要注意什么?
那么自学需要学习什么呢?初学者主要就是学习发现机器学习的“Whys”、明确那些可能会对你产生阻碍的自身限制、探讨该领域的基础定义和概念。新手主要就是学习应用机器学习过程中的步骤、通过应用机器学习的步骤去了解足够的工具和库的细节(基本熟悉工具和库)、练习通过使用应用机器学习解决端到端问题。中级就是对算法,问题和工具进行小调查、通过参加机器学习的相关比赛以提高自己的应用机器学习的技能。高级就是以结构化的方法开发算法,问题和工具的扩展、为社区做贡献。
在这篇文章中我们给大家介绍了有关机器学习的层次知识,我们在学习机器学习的时候需要对自己的实际情况进行定位,然后进行合理的规划,这样我们才能有个清晰的目标和路线,以帮助我们更好地掌握机器学习的各个知识点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22