
我们在进行数据挖掘工作的时候,我们需要使用一些模型,而模型中还需要对数据类型进行处理,我们一定要重视模型的使用,这样我们的数据挖掘模型的成功率就能够大增。我们在这篇文章中给大家介绍一下预测模型,同时也给大家介绍一下数据挖掘中使用的内容类型。
1.预测模型
在预测模型中,所有预测工具都要求我们预测连续数值。无法预测已保存为文本的数字。如果数据包含数据类型错误的数字列,可以使用Excel函数创建数字数据类型正确的列的副本。如果执行此操作,请务必删除包含文本数字的列的副本,以便值不会重复。当然,如果要创建回归模型的散点图,则输入变量也必须是连续数字。这样我们可以根据使用内容类型生成更好的模型。所谓“内容类型”是应用于列的属性,用来指定模型使用列数据的方式。执行分析时,算法可以使用内容类型作为说明或提示。如果使用在此外接程序中提供的向导和工具,则不必担心内容类型。但是,如果使用将模型添加到结构建模选项将新模型添加到现有数据,则可能会得到与内容类型相关的错误。
得到错误的原因我们就必须清楚导致错误的原因是,某些类型的模型要求某种类型的数据。这些工具根据特定要求处理这些列,并且还添加内容类型属性。因此,如果对完全不同的算法重复使用数据,则可能需要更改数据类型或内容类型。
2.数据挖掘中内容类型
我们现在给大家介绍一下数据挖掘中使用的内容类型,数据挖掘中使用的内容类型有离散、键、键序列、键时间。首先说一下离散,该列包含各值之间没有连续体的有限数量的值。例如,性别列是一个典型的离散属性列,这是因为该数据表示特定数量的类别。然后我们给大家说一下键,该列唯一标识某一行。通常,键列是数值或文本标识符,不应该用于分析,只应用于跟踪记录。时序键和序列键是例外。接着说一下键序列,该列包含表示事件序列的值。这些值是有序值,但不必按等差排列。键时间就是该列包含按顺序排列并表示时间刻度的值。仅当模型为时序模型或顺序分析和聚类分析模型时才能使用键时间内容类型。
在数据挖掘工作中我们需要重视的有预测模型的内容以及数据挖掘中使用的内容类型,大家在做数据挖掘工作的时候切莫忽视这两个细节,只有这样我们才能够处理好当下的工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29