
现在很多人都是比较关注机器学习的,而大家在进行机器学习的使用或者学习中都会或多或少出现一点错误,这就使得很多人无法正确理解机器学习知识,那么大家是否知道机器学习中常见的错误都有哪些呢?下面我们就给大家介绍一下关于机器学习的常见错误。
机器学习中的常见错误有两个,第一就是很多人过于依赖算法,这是为什么呢?因为机器学习系统的核心是模型和算法,基于模型和算法的可扩展性也是机器学习系统的核心竞争力之一。虽然说机器学习的核心是算法和模型,但是这并不代表系统中的每个环节都一定要用算法来处理,完全摒弃非算法的、甚至手工的方法。很多机器学习系统中都会有一些核心的基础数据,不管这些数据是多还是少,大家的第一反应往往是用算法去处理这些数据,但是有的时候简单直接的方式才是真正有效的方法。但是真的是这样的吗?
我们在构建机器学习的时候,需要得到一份干净的数据,那么什么是干净的数据呢?干净的数据就是没有噪音的数据,为了达到去除噪音的目的,有人尝试过很多方法,简单的高级的都试过,都有效果,但都达不到我们要的效果。不过经过ROI衡量,我们决定人工来处理这些数据,用这种方式进行处理数据能够获得更好的结果。所以说,我们不是不提倡使用算法,我们提倡的是要根据具体的问题选择合适的方法。过于依赖某一种方法会有局限性。这样就能够很好的解决很多问题,所以说,即使是在机器学习系统这种整体比较高大上的系统中,也要具体问题具体分析,需要我们换方式做的,我们就不能使用算法了。
机器学习中常见的错误还有团队不够“全栈”。就目前而言,全栈工程师是近年来很火爆的一个概念,在机器学习这样一个复杂系统中,每个人都做到全栈未必现实,但是有一条基本要求应该努力做到,就是团队级别的全栈。而机器学习系统的团队一般主要由算法工程师和系统工程师组成,往往会忽略其他角色,比较典型的就是掌握前端技能的工程师。前端技能在机器学习系统中有很重要的作用,当然,技术全栈只是解决问题的手段,更重要的是能关注全部系统的全局性思维。
在这篇文章中我们给大家介绍了关于机器学习中容易出现的错误,第一就是过于依赖算法,第二就是团队的全栈水平不够。所以说,我们要想更好的学习机器学习就一定要避免这两个问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15