京公网安备 11010802034615号
经营许可证编号:京B2-20210330
现在很多人都是比较关注机器学习的,而大家在进行机器学习的使用或者学习中都会或多或少出现一点错误,这就使得很多人无法正确理解机器学习知识,那么大家是否知道机器学习中常见的错误都有哪些呢?下面我们就给大家介绍一下关于机器学习的常见错误。
机器学习中的常见错误有两个,第一就是很多人过于依赖算法,这是为什么呢?因为机器学习系统的核心是模型和算法,基于模型和算法的可扩展性也是机器学习系统的核心竞争力之一。虽然说机器学习的核心是算法和模型,但是这并不代表系统中的每个环节都一定要用算法来处理,完全摒弃非算法的、甚至手工的方法。很多机器学习系统中都会有一些核心的基础数据,不管这些数据是多还是少,大家的第一反应往往是用算法去处理这些数据,但是有的时候简单直接的方式才是真正有效的方法。但是真的是这样的吗?
我们在构建机器学习的时候,需要得到一份干净的数据,那么什么是干净的数据呢?干净的数据就是没有噪音的数据,为了达到去除噪音的目的,有人尝试过很多方法,简单的高级的都试过,都有效果,但都达不到我们要的效果。不过经过ROI衡量,我们决定人工来处理这些数据,用这种方式进行处理数据能够获得更好的结果。所以说,我们不是不提倡使用算法,我们提倡的是要根据具体的问题选择合适的方法。过于依赖某一种方法会有局限性。这样就能够很好的解决很多问题,所以说,即使是在机器学习系统这种整体比较高大上的系统中,也要具体问题具体分析,需要我们换方式做的,我们就不能使用算法了。
机器学习中常见的错误还有团队不够“全栈”。就目前而言,全栈工程师是近年来很火爆的一个概念,在机器学习这样一个复杂系统中,每个人都做到全栈未必现实,但是有一条基本要求应该努力做到,就是团队级别的全栈。而机器学习系统的团队一般主要由算法工程师和系统工程师组成,往往会忽略其他角色,比较典型的就是掌握前端技能的工程师。前端技能在机器学习系统中有很重要的作用,当然,技术全栈只是解决问题的手段,更重要的是能关注全部系统的全局性思维。
在这篇文章中我们给大家介绍了关于机器学习中容易出现的错误,第一就是过于依赖算法,第二就是团队的全栈水平不够。所以说,我们要想更好的学习机器学习就一定要避免这两个问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27