京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的出现给很多行业带来了改变,尤其是商业,商业和大数据的融合使得商业发展飞快,也使得商业的规则被重置。以往的商业模式在不断地被淘汰,那么大数据给商业带来的改变都有哪些呢?下面我们就给大家介绍一下这些内容。
在融合了大数据的商业中,一切的商业行为和商业信息都开始数据化了,这里说的数据化就是一切事物都可以量化,一般来说,数据就是最不可能的地方提取出来。而庞大的数据库有着小数据库所没有的价值。如果把一个从不被认为是数据、 甚至不被认为和数据沾边的事物转化成了可以用数值来量化的数据模式。 同样, 从看上去没什么用处的事物中提取出了信息, 转化成了极其有用的数据。 这样创新性的应用创造出了这些信息独特的价值。
所以,这些行为就可以被称为“数据化”。这是指一种把现象转变为可制表分析的量化形式的过程。数据化和数字化大相径庭。数字化指的是把模拟数据转换成用0和1表示的二进制码,这样电脑就可以处理这些数据了。
现在很多人都认为大数据的发展和计算机的变革是同步的。但事实并不是这样的。事实就是现代信息系统让大数据成为了可能,但是大数据发展的核心动力来源于人类测量、记录和分析世界的渴望。信息技术变革随处可见,但是如今信息技术变革的重点在技术上,而不是在信息上。现在,我们是时候把注意力放在信息上面了。为了得到可量化的信息,我们要知道如何计量。为了数据化量化了的信息,我们要知道怎么记录计量的结果。这需要我们拥有正确的工具。计量和记录的需求也是数据化的前提。
而数据化的实现有一点必不可少,那就是要从潜在的数据中挖掘出巨大的价值,然后揭示出新的深刻洞见。简而言之,数字化带来了数据化,但是数字化无法取代数据化。 数字化是把模拟数据变成计算机可读的数据,和数据化有本质上的不同。当文字变成数据,这样就能够大显神通了,这样就能够使用机器分析。可以挖掘出很多的潜在用途。
以上的内容就是小编为大家解答的大数据给商业带来的改变的内容了,由于篇幅原因我们就给大家介绍到这里了,希望这篇文章能够给大家带来帮助,最后感谢大家的阅读。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26