京公网安备 11010802034615号
经营许可证编号:京B2-20210330
现在人工智能的发展带来的前景是非常明晰且乐观的,也是人类科技不断向前的一个标志。不过现阶段的人工智能智能还尚处于弱人工智能阶段,离我们想象中的人工智能还是有很大的差距。那么我们怎么看待现在的人工智能呢?下面我们就给大家介绍一下这个内容。
我们从两方面进行描述对人工智能的看法,第一方面就是我们要肯定人工智能领域的研究人员近几年来所做的工作,确实在狭义人工智能方面取得了重大的进展,可以让机器有一定的感知和判断能力,但机器学习和神经网络的开发与实现真正的人工智能是不一样的。阿尔法狗是这方面的顶尖的水平,但阿尔法狗的通用性是显示在算法和模型迁移方面,能够比较快的建模训练解决更多的特定问题,就是这样也仅仅是接近,而不是说具备了通用智能。我们可以这么说,在通用智力方面的研究其实并没有什么突破性的进展。
在另一方面来说,现在人门对人工智能的核心学科也存在争议。现在有两种流派,一种是以计算机学科为核心,硬件、编程和算法来构建的人工智能体系。还有一种是以神经元学科、生物学、心理学等综合学科结合为构想,计算机学科来实例化的人工智能。第一种流派是追求务实,讲究实用和效果,研究也更快出结果,更加容易观测,比如语音识别和人脸识别这些算法和硬件都是通过计算机来实现的。后一种更关注综合学科的交叉和发展,计算机是辅助实现的方式,因为需要综合多个学科,所以研究花费的时间和精力都要大很多,结果也存在很多不确定性。两种流派也有争论,谁高谁低的问题。现在热火朝天的开发的深度学习相关的应用,语音识别、模式识别、图像识别等等,都是人工智能需要注意的内容。可以说,计算机科学主导的人工智能,很容易走到瓶颈,我们现在看起来狭义人工智能在感知和识别方面应用广阔,但也就是十年到二十年这方面的研究就到头了,但是在未来我们很可能没有知识或者理论进行下一步的研究。如果一直炒冷饭,那么人工智能的发展就会止步不前了。
我们在这篇文章中给大家介绍了人们对现阶段的人工智能的看法,一方面我们肯定人工智能的成果,另一方面我们还是需要认清楚人工智能的核心学科,把握好人工智能发展的方向,这样才能够让人工智能更好地造福我们人类乃至整个地球。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26