京公网安备 11010802034615号
经营许可证编号:京B2-20210330
对于科学研究:人类动力学研究,计量社会学,复杂网络,数据挖掘,理论计量学、应用计量学、或是各个论文中对数据整理都异常重要。
而网络爬虫是收集相关数据的利器,它可以抓取某个网站或者某个应用的内容,提取有用的价值以及各种数据。也可以模拟用户在浏览器或者App应用上的操作,实现自动化的程序。
而因为Python的脚本特性,以及其不仅易于配置,而且对字符的处理也非常灵活,加上Python有丰富的网络抓取模块,所以网络爬虫经常与Python联系在一起。
“工欲善其事,必先利其器”,当您的实证分析中有了一手的准确数据,就好像伐木人有了一把锋利的斧子,那么您的实证效率会呈现几何级的增长!这把利器就是Python爬虫:
Python爬虫学术应用_3月北京现场班
时间:2019年3月22-25日 (四天)
地点:北京市海淀区丹龙大厦附近
安排:上午9:00-12:00,下午1:30-4:30,答疑4:30-5:00
费用:3600元 / 3000元(学生价仅限全日制本科生及硕士在读);食宿自理
讲师介绍:
阎老师,长期从事数据分析的理论研究、教学和实践工作。长期关注各类统计软件的发展和国内外各行业的应用情况,一直保持着与统计应用前沿的密切接触,在数据挖掘应用、市场研究应用等领域经验丰富。
擅长企业数据分析和企业诊断,参与多项国家级、省级课题的科研工作,曾任多家电商企业的运营顾问和培训师,积累了大量实战经验。
课程导引:
在了解爬虫的过程中,由于对这项技术缺乏系统了解,“小白”们难免会被纷繁生僻的知识点折腾地眼花缭乱、晕头转向。有的人打算先搞懂基本原理和工作流程,有的人计划从软件的基本语法入门,也有人打算弄懂了网页文档再来……在学习抓取网络信息的道路上,许多人因为中途掉进陷阱最终无功而返。因此,掌握正确的方法的确非常重要。
这一门课的目的,就是希望能够通过通俗易懂的讲解,令没有编程基础的研究人员通过学习,能够学会爬取主流网站的内容并整理成为可为后续分析提供依据的数据资料。在这门课结束之后,我们能够爬取豆瓣的评论内容、学术论文、淘宝的销售数据、房价的变化趋势,还能对股票市场进行分析和预测。
课程大纲:
为了能够完整地呈现Python数据采集的方法和过程,这门课将分为四大部分——
一、Python快速入门
在写爬虫之前,我们需要了解一些有关工具的基础知识。所以,第一天的授课内容是关于Python基础的,是后续课程中读懂并编写爬虫程序的铺垫。其中包括了Python的数据结构、变量类型、循环和控制语句、Numpy和Pandas包的基本功能。有基础的老师可以跳过这一部分直接进入第二部分。
第1章 认识Python
1. Python的数据结构与函数
2. Python的循环与控制流
3. Python的基本扩展库
二、初识爬虫
在这一部分中,我们将正式接触爬虫,我们也将感受到每天都在使用的浏览器究竟藏着哪些细节。为了能够得到清洁的数据,我们不得不忽略网页精致的外观和编排,刻意绕开浏览器的帮助来分离和理解数据。页源里除了我们认识的文字,那些标签都有着怎样的含义?如何把网页内容“请”到我们的分析工具中来?爬取数据有怎样的规律可循?这些都是第二部分将要呈现的内容。
第2章 重新认识网络
1. 什么是Web前端
2. HTML的结构
第3章 创建爬虫
1. 什么是爬虫
2. Python爬虫的环境搭建
3. 爬虫三部曲——获取、解析、保持
小例子:创建第一个爬虫
三、页面解析
在之前的课程中,我们已经知道了要怎样繁复的工程才堆砌出绚丽的网页,但这其中大部分的内容是我们并不需要的。如何穿越层层与我们无关的标签和HTML属性抽取到清洁的数据内容?如何使用更简洁高效的方式达到目的?大名鼎鼎的“正则”究竟是什么?这些是4-6章要重点讲授的内容。
第4章 复杂HTML解析
1. 正则表达式
2. 一个名叫“心灵鸡汤”的扩展库
3. 导航树
4. 突破反爬虫的限制
案例1:静态页面爬虫
第5章 动态渲染页面的爬取
1. Ajax和动态HTML
2. 无界面浏览器PhantomJS
3. 自动化测试库Selenium
案例2:动态爬虫
第6章 Scrapy爬虫架构
1. Scrapy爬虫结构
2. 创建爬虫模块
3. 选择器
4. 构建Item Pipeline
5. 请求与相应
案例3:Scrapy爬虫
四、爬取结果的处理
到目前为止,我们处理的还都是规范数据,但现实是,我们面对更多的是样式不规范的数据,放弃不符合预期的数据并不是一个长久之计。在我们无法挑选数据时,这一章的内容就显得格外有用了。一个长句中究竟包含了哪些有效信息?一条评价反映出客户怎样的态度?接下来的内容将介绍一些工具和方法,帮助我们控制或筛选进入视线的数据,为后续的数据分析做准备。
第7章 数据清洗
1. 清洗结构化数据
2. 清洗非结构化数据
3. 数据标准化
案例4:计算词频
第8章 自然语言处理入门
1. 获取文本语料
2. 加工原始文本
3. 从文本中提取信息
案例5:情感分析
优惠信息:
现场班老学员9折优惠;
同一单位三人以上同时报名9折优惠;
以上优惠不叠加。
报名流程:
1. 点击“我要报名”,网上提交报名信息;
2. 订单缴费;
3. 缴费确认,开课前一周发送软件准备,电子版讲义;
4. 现场领取发票及邀请函。
联系方式:
魏老师
QQ:2881989714
Tel:010-68478566
Mail:vip@pinggu.org
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28