京公网安备 11010802034615号
经营许可证编号:京B2-20210330
现在大家可能都听说过大数据,大数据的出现使得各个行业的发现具有了方向性,为推动社会做出了巨大的贡献,大数据离不开数据挖掘,那么大家知道不知道大数据可以做什么呢?简单来说,大数据可以让预测未来。
一、大数据可以预测未来
简而言之,大数据和数据挖掘能够赋予我们预测能力。而现在我们的生活已经数字化了,我们每天所做的任何事情都可以通过大数据记录下来,就好比每张信用卡交易都是数字化和可查询的。对于企业来说,大多数财务和运营数据都保存在数据库中。而现在,随着可穿戴设备的兴起,大家的每一次心跳和呼吸都被数字化并保存为可用数据。使得机器了解我们。
二、如果模式保持不变,那么未来就不再是未来
现在,我们生活中的许多不同事物都有不同的表现形式。比如说,一个人可能在任何工作日内在工作和家庭之间旅行,在周末到某个地方游玩,这种模式很少改变。商店将拥有任何一天的高峰时段和闲置时间,这种模式不太可能改变。企业将在一年中的某些月份要求更高的劳动力投入,这种模式不太可能改变。
由此,计算机通过终端去进行搜集到这些数据,就去分析这些数据,然后对受众群体进行合理的安排。计算机也就能够知道什么时候是适合促销的最佳时间,例如,如果这个人每周五的星期五都要洗车,或者是优惠券,那就是洗车促销如果这个人每年三月都要去度假,那就可以进行全方位的服务。同时计算机还可以预测商店全天的销售预测,然后制定业务战略以最大化总收入。一旦未来变得可预测,我们可以随时提前计划并为可能的最佳行动做好准备。这就说明了大数据给了我们预测未来的力量。这是数据挖掘的力量。数据挖掘始终与大数据联系在一起,因为大数据支持大量数据集,从而为所有预测提供了基础。
三、机器学习是什么?
刚才我们根据一块数据的处理方式进行了分析。假设这条数据包含一组购物者的购买行为,包括购买的商品总数,每个购物者购买的商品数量。这是迄今为止最简单的统计分析。如果我们的目标是分析不同类型的购物者之间的联系,或者如果我们想要推测特定类型的购物者的特殊偏好,或者甚至预测任何购物者的性别或年龄,我们将需要更多复杂的模型,通过录入的数据,我们称之为算法。机器学习可以更容易理解为为数据挖掘目的而开发的所有不同类型的算法,方便我们的生活。
四、数据挖掘是什么?
通过计算机去学习算法,用现有数据去预测未知数,这正是数据挖掘的奇迹与机器学习密切相关的原因。然而,任何机器学习算法的强度在很大程度上取决于大量数据集的供应。无论算法有多复杂,都不能从几行数据中做出预测,需要大量的数据作为样本。大数据技术是机器学习的前提,通过计算机的学习,我们能够从现有数据集中获得有价值的见解,这就是数据挖掘。
以上的内容就是对于大数据可以做什么?这两个问题的具体的解释了,大数据的出现能够让我们更好的预测未来,希望这篇文章能够给大家带来帮助,最后感谢大家的阅读。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01