
量化投资GPU算法交易应用举例:VaR估计
应用举例:VaR估计
VaR是指在正常的市场条件和给定的置信度内,用于评估和计量任何一种金融资产或证券组合在既定时期内所面临的市场风险大小和可能遭受的潜在最大价值损失。
VaR有两种使用模型:
一种是金融机构用来度量风险控制能力;
另一种是交易中评估投资组合的风险和收益。
VaR程序计算复杂度非常高,特别是Basel II市场风险管理规则对VaR的要求更严格。显然在集成了VaR的算法交易系统中,VaR的运算速度非常重要,因为在投资组合开始计算VaR到计算结果输出的时间内,投资组合是暴露在风险中的。所以,衍生品交易者和高杠杆交易者必须加速对市场风险(VaR)估计算法以避免投资损失。
现有的投资组合估计方法有两种:
一种是考查单个资产在时间区间的损失,然后将它们合并起来决定资产组合的风险。这个合并的过程要用到蒙特卡罗(Monto Carlo,MC)方法,因为合并是投资组合中各种资产联合分布函数的非线性叠加;
第二种是基于投资组合的方法则只使用MC方法估计投资组合损失的分布。
伯克利大学的学者就采用CPU和GPU的VaR算法进行了比较。在其研究中,使用了MC方法而非分析计算方法,其原因是MC方法在期权或隐含期权的投资组合分析中,分析法的损失函数分布的“尖峰厚尾”性质较难以得出,此时MC算法更准确。同时因为交易是非线性过程,这个非线性过程最终聚集的分布可以认为是资产收益率的分布。
使用GPU来做MC-VaR,其步骤为:
第一步,问题的重新表述,其目的是将数学算法转化成适于计算的浮点运算;第二步,模型选择,产生可快速收敛的伪随机序列;
第三步,基于GPU的优化,主要是优化内存的读取。
该算法在CPU和CUDA上运行的结果近些年做了比较。其CPU平台为Intel Core 9300 Quadcore CPU,有着3MB L2缓存,2.5GB时钟频率。GPU时钟平台为NVIDIA GeForce GTX280,有1GB内存,30个1.3GB的CPU。每个有8条运算单元。经过问题重构和并行化处理,得到如表16-1所示的结果。
表16-1 VaR算法GPU和CPU时间对比
由此可见,通过使用GPU,学者得到了超过CPU 495倍的运算速度。由此可以看出,金融算法在并行化之后采用GPU运算,其实时性会大大增强,进而降低了风险,增加了交易速度。在量化交易中,GPU编程可以解决运算速度瓶颈。随着显卡性能的不断提升,其应用有着巨大的潜力和前景。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22