
“大数据”时代的投资机会
基于“大数据”的智慧产业的重要意义在于,可以更准确地把握市场需求和预测社会群体行为,在此基础上优化各个产业企业环节的生产效率,并以此提升整个社会的生产力。
人类从狩猎到耕种,是利用了土地资源升级了社会生产力;进入工业时代,是利用机器解放了人类的双手升级了社会生产力;电子通信和互联网的出现,大大提升了全球资讯的使用效用,并以此进一步提升了社会生产力。在经历了2008年金融危机后,在欧债危机的影响下,下一个产业升级出自于哪里众说纷纭,而智慧产业很可能成为下一个产业革命的关键。
以工业企业为例,对于社会信息的有效掌握和分析,有助于企业准确把握市场下一个热点或趋势,降低创新过程中的失败概率,也有助于提升企业在市场营销和销售过程中的效率,避免泛广告投放的效率低下。反之,作为消费者,也会更有效率地找到自己想要的商品。现在网购平台构建的“你可能喜欢的产品”功能,就是这种效率提升的初级应用。
用梅耶森博士的话来讲,就是你的设备(指有“大数据”处理功能的智能化设备)会变得非常智能化,它就变成你非常有智力的助手了,所以我们要进行创新的话,不能只是知道现在的情况,我们要知道明天或者未来五年会发生什么情况。
“大数据”产业链有很多环节,未来都可能面临较大的发展机遇。
首先,信息数据产生将会是第一个环节。信息的产生很好理解,比如,现在公众每天使用的互联网和无限通讯,即时通讯、微博、手机电话、短信、彩信甚至是每一个互联网点击(通过点击习惯可以分析经常浏览某类网站,喜欢某类商品,以及上网时间等使用习惯),都是数据的产生。现在数据产生最多的领域是物联网,根据IBM的分析,上网人数和手机人数在过去最多是2-5倍的增长,而物联网上连接设备的数量在过去5年增加了2000倍。上述领域拥有大量的数据,企业可以依靠这些数据,或进行分析自我提升效率,或出售这些数据(当然,前提是不涉及个人私密信息的数据)给专业分析机构。
其次,信息数据的大量产生需要存储。存储设备领域的增长潜力同样不容忽视。虽然存储设备是整个产业链中技术含量最少的,同时发展空间也可能没有其他子行业充满想象力,但却可能是增长最稳定的子行业。
再次,信息数据需要采集整理。许多数据的产生是散乱和随机的,不仅在内容上如此,在互联网各种平台分布上也是如此。如何尽可能最大范围地采集信息数据,并进行有效的噪音数据剔除。这个环节如果有IT企业能够参与其中,想必也能有不错的发展机遇。
最后,信息数据的分析产出。这个环节是整个“大数据”产业链的最末端,也可能是最具技术含量和产业附加值的子行业。任何数据不经过分析这一环节,都无法落实到实际应用。而且,在同样的数据面前,谁分析出的结果最有效,将决定谁才是真正的“大数据”智能产业领跑者。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22