京公网安备 11010802034615号
经营许可证编号:京B2-20210330
现代数据中心六大优化趋势
能源成本仍然是数据中心增长最快的费用,据说超过了计算设备本身的成本。电力使用效率(PUE)和碳使用效率(CUE)是国际公认的指标,与更多其他的定义指标一道,将成为行业标准。新的数据中心的建设和改造,必须同时应对业务和绿色环保的双重需求。
随着数据中心的成本不断飙升,数据中心管理的重点开始转向优化数据中心基础设施。在未来几年,如下的一些新的趋势必将影响未来数据中心的决策:
(一)数据中心的远程监控
关于企业数据中心是否采用外包的争论仍在继续。企业已决定继续在内部运行IT,并找到了成本有效的使用外部数据中心监控的供应商。在某些情况下,物理基础设施设备,外部监测和第一级的支持,需要安全访问权限。需要更多的基础设施防火墙和安全措施,这将增加数据中心的复杂性。另一方面,由于工作人员工资和工作空间是连续的支出。此外,一个团队规模的缩放在外部环境规模更容易。
(二)数据中心的选址
一家数据中心的选址问题是一个相当重要的决定。因为现在的技术进步已经使得大多数任务可以进行远程操作,现场只需要有少量的工作人员需要即可,这就为数据中心的选址提供了广泛的地域选择。对这一决定有着相当影响的一些因素是:
选址地区的气候特点
每千瓦小时的最低费用
对环境的最小危害
降低生产成本
选址地区较低的人口稠密度
低建设成本
低劳动力成本
“自然冷却”的可行性:使用室外空气用于冷却数据中心,从而需要减少机械制冷。
(三)绿色IT
能源消耗直接影响冷却费用,毕竟散热主要来自设备。战略业务计划将直接影响到安装在数据中心的IT设备的类型和数量。了解数据中心的设备的类型和工作效率的相关知识是非常重要的,因为这会影响数据中心电源和冷却战略,以及数据中心的物理设计战略。使IT更具效率和成本效益,继续成为业界关注的焦点,无论是对于制造商还是消费者。[page] (四)可扩展性和模块化
在过去几年中,只有硬件和软件的可扩展性和模块化架构,以满足日益增长的需求。鉴于对基础设施的成本和需求的压力,现在有必要对数据中心基础设施实施可扩展性和模块化设计方法。
这样的做法,例如,适用于UPS和配电系统,将使数据中心添加/禁用某一部分,不会影响另一家数据中心。灵活的设计使托管服务提供商可以根据客户的要求添加和删除数据中心的某些部分。为了迎合顾客的不同负载和任务的需求,也需要一个灵活的设计。
(五)灾难恢复优化和可用性
从历史上看,硬件的利用率很低,虚拟化还有很长的路要走。然而,人们关注的重点一直聚焦在如何提高生产数据中心的效率,却并未考虑灾难恢复(DR)/备份中心的问题。因为其一直处于“关闭”或“闲置”。现在,企业已经意识到开始对这些“闲置”的设备进行重要的投资。并采用创新的方法,将其用于灾难恢复(DR)的基础设施。使用灾难恢复中心作为测试、培训的趋势正在持续增长。设计需要考虑到切换的能力,以最安全,最快捷的手段来生产。
(六)数据中心基础设施管理
IT和数据中心设施管理的融合是一个现实。大多数基础设施设备是按照IP寻址,就像IT设备已经实施了多年一样。开发阶段的几家公司要将两种不同的环境融合在一起。按照情景规划的IT组件和物理基础设施元素的能力,将使设计师知道计划和变化的IT环境如何影响物理环境,反之亦然。例如,如果我们安装了特定类型的IT硬件,将对UPS和冷却系统的负载产生何种影响?避免成本不超过工程费用将实现这些产品顺利打入市场。
至关重要的是,这些因素必须在数据中心策略和设计的早期阶段充分考虑到,毕竟这些功能将对IT预算产生非常重要的影响,如果没有计划好,可能会对数据中心的计算能力和运营成本产生不利影响。
罗恩蒂尔森是Infosys信息技术有限公司可持续发展实践的首席顾问。拥有30多年的IT从业经验,其中26年是数据中心行业相关。对于本文亦有贡献,他曾在新的数据中心建设和现有网站的建设部署过程中担任过各项职责,致力于物理和IT基础设施的工作。
本文作者维伯哈夫巴蒂亚是Infosys信息技术有限公司和数据中心认证协会可持续发展实践的高级顾问。拥有9年的IT从业经验,成功管理着一家数据中心,并在多个数据中心的优化和绿色IT倡议组织工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27