京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据是可携带设备的灵魂_数据分析师
今天来说说一直火的挥散不去的大数据吧。
大数据很热,而且将持续热火下去。大数据是一个比较泛的概念,凡是为了研究某种相关性而尽可能获取更多的数据并全部投入分析的研究过程都属于大数据技术。大数据的技术一般要涉及巨量的计算资源和存储资源,看上去不是属于科研范畴,就是概念炒作。什么全数据,什么容错度,看上去简直是越大越不靠谱。但是事实上,大数据离我们很近,特别是已经具备了云计算这个基础之后。比如Google的全文翻译,比如淘宝店里各种闪的广告,都有大数据隐约的身影。如果说这些都还离我们太远,那么等可携带式装备越来越多之后,大数据将和我们形影不离。
利用大数据,首先就是要把所有相关的数据都倒在一起,不需要特别预设立场去做抽样。比如需要训练自己的口头表达能力,就开始把自己每天所说的话都录音,后台分析之后,每天都可以提出改进建议,日积月累下来,就基本可以把学员的说话毛病给改没了。那么,把所有的活动进行记录,就可以扭转死宅的的属性;把所有的生理参数记录,就可以及时挖出健康隐患……这种全数据投入分析的好处,就是可以在很多的偶然中把事物的强、弱相关性都一一展现出来,不留遗漏。相关性太多也许会打扰到分析结论,比如,对健康隐患的提醒也许只能到“贵胃部可能出问题了”这种模糊的地步,但这已经价值很大了。毕竟,可携带设备不是让医生失业,而是帮他们赚更多的钱,只要提醒到用户能及时前往医院检查,就已经功德无量。
如果没有大数据参与其中,可携带设备除了酷,还有什么好处?记录下来每天走了多少路,然后,就没有了然后,存那么多数据只是为了让用户自己跟自己练级么?整天拍照片拍视频扔云里也是一种行为艺术,不信大家翻翻自己的硬盘,那些照片都整理得过来吗?那些视频有多少被重播过第二次?没有大数据技术来参与分析、进行相关性挖掘,可携带设备这些产生海量数据的玩具,就只能昙花一现。
现在,研发一种可携带设备,最好在量产之前首先要明确,这个装备能够帮助到用户哪个方面,然后再来决定记录什么数据。比如那些记录运动频度的,能不能够在某一个时间段之后,开始提出改进性建议?类似建议用户每天多散步三十分钟,每次跑步时间持续不要少于五分钟等;那些记录用户睡眠情况的,能否及时告诫用户不能睡眠太少,甚至主动通知所设定的联系人进行人性化的提醒;如果是拍照片、视频的,除了主动记录环境、时间这些周边参数之外,也需要提醒用户设定更多的标签,甚至可以提醒用户说,前天有某个异性也拍摄了同样的照片共享出来了,要不要跟TA聊聊……
有不少人对大数据,对可携带设备深怀介心,觉得这些怪物不但可能侵犯隐私,也可能被“老大哥”控制而变成独裁者的监控网络。其实,现在有的社会可以公开买卖枪支,有的社会连小猎刀都禁止,但他们的犯罪率对比起来,制度严酷的后者往往更要严重得多。也许,石刀被砸出来的时候,部落里的智者也是担忧过的;也许,钢刀被锻造出来的时候,朝堂上多少人在嚷嚷着侠以武乱禁。
工具永远只是工具,关键是对这些工具的管理和相关法律的跟进。至于老大哥的监控,经过了异口同声的旧媒体年代,经过了重重长城的新媒体时代,还需要担心资讯随身的自媒体时代么?技术进步多带来的思想自由,只有更好,没有更坏。现在发达国家把很多原本独占的数据都共享出来,那么发达中国家的人民也许可以逐步摆脱无数据的数据蛮荒时期,从民用大数据中打开自己的第三只眼。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01