
坚守量化投资的工匠精神
“量化模型能在短时间内覆盖几千只股票,其核心在于大数定律,即只有选股的次数足够多,胜率才有意义。因为持股数目较多,相对分散,所以,组合的收益也会比较稳定。”
在量化投资领域,成功不仅源于投资管理人对于数据和逻辑的运筹天赋,更源于其勤奋,即对投资工匠精神的追求。
细微之处显精益。建信基金金融工程及指数投资团队对自主研发的多因子量化投资模型精雕细琢,不仅让建信基金的指数和量化产品投资业绩大放异彩,也成为建信基金金融工程及指数投资部副总经理叶乐天的制胜法宝。在第五届中国基金业英华奖评选中,叶乐天荣获“三年期量化投资最佳基金经理”称号。
数学系科班出身的叶乐天,出于对数学和金融的兴趣,选择将两者结合的金融工程领域作为就业方向。叶乐天的职业生涯从中金公司的衍生品定价开始,这为他后来在建信基金做量化投资打下了坚实的基础,也让他的投资可操作范围更为广泛。
对于量化投资的前景,叶乐天持乐观态度。他认为,随着A股市场股票数量渐趋增多,可作为投资依据的数据量日渐增大,量化投资的优势也会愈加凸显。
打造多因子量化模型
追求投资“长跑”取胜
谈及自己管理的多只基金业绩良好的原因,叶乐天表示,建信基金金融工程及指数投资团队开发的多因子量化投资模型起到了决定性作用,整个团队从多因子量化投资模型的筹划、搭建到应用以及调整,齐心协力、精雕细琢,力求将多因子量化投资模型做强做优。
据叶乐天介绍,建信多因子量化投资模型分为两部分,一是阿尔法模型,二是风险模型。阿尔法模型用来提高收益,风险模型用来控制跟踪误差,两者缺一不可。具体而言,阿尔法模型采用涵盖质量、动量、成长、情绪、大数据等100多个因子的维度去精选个股,并从市值、行业、风格等多维度严控风险。权重则由程序根据过往因子和收益的相关性来自主调整,完全自动化。风险模型进行严格的控制,整体的风格和基金所跟踪的指数特别接近,以降低跟踪误差和换手率。“这就相当于给每只股票出一张100余道题的卷子,然后让每只股票的市场数据去作答,个股得分决定其最终能否被纳入股票池中,并最终落实到投资组合里。”
谈及建信多因子量化投资模型的独特之处,叶乐天说,因子是量化投资模型的灵魂,“因子如何选择,因子权重如何分配,基本是模型中最重要的东西,每个多因子量化投资模型的独特之处取决于各基金管理人对于因子的理解,以及自身所擅长的领域”。建信基金金融工程及指数投资团队也尝试了很多方法,但万变不离其宗,控制风险的总体原则一直没变。
叶乐天说:“首先,在模型因子的选择上,追求整体的逻辑性、科学性。在因子具体的挖掘过程中,我们不是依靠历史数据来挖掘因子,而是先通过各种渠道寻找到逻辑上可能有效的因子,再通过回测做进一步确认。举个例子,如果仅仅看回测,可能由某些不合理的模型因子筛选出的个股构建的投资组合的业绩结果更好,但在处理数据或者给因子赋权上,不符合常识或者不符合数学规律的因子我就放弃。其次,建信多因子量化投资模型追求精益求精,更注重对细节持续性的改进和打磨。这些细节上的差异正是建信多因子量化投资模型的优势。”
据他介绍,建信多因子量化投资模型运作部分实现了自动化,“一开始是用外面的商业软件,虽然做得很好,但我们无法控制,也无法做到自动化”。所以,建信基金金融工程及指数投资团队花了很长时间实现模型投资运作本土化,除了达到很好的可控性,也大大提高了风控能力。
虽然量化投资在交易的大部分时间不需要人为干预,但叶乐天坦言,要创造出有效的操作模型并不容易。从数据到因子,从因子到投资组合,都有很长一段路要走。
建信基金金融工程及指数投资团队多年专注构建与修正多因子量化投资模型,从2012年至今,历时6年多的时间验证,建信多因子量化投资模型已成为建信基金金融工程及指数投资团队的核心竞争力,海通证券数据显示,由其支撑运作的建信基金旗下多只指数增强基金超额收益率位居同类产品前列。
“对于指数增强产品,我们的投资目标不仅是着力获取超额收益,更希望获得的超额收益是持续而稳定的。”叶乐天说,“因为指数增强产品是高仓位的基金,业绩的可持续性非常关键。我们希望投资者在任何一个时间点买进产品并持有一段时间后都可以获得超越指数表现的收益。”
“量化投资的特点是通过‘长跑’取胜,长期业绩一般要比短期业绩突出得多。”在叶乐天看来,量化基金能够在量化投资模型的支撑上获取持续稳健的投资业绩,且风险控制较好。
“我们比较追求胜率,即追求超额收益的稳定性。所谓胜率,即跑赢指数的概率。”叶乐天说,“业绩稳定很重要,因为投资者看到的都是过往业绩,而他们想要的却是未来业绩。也就是说,投资者想要的,实际上是看不到的。如果有一个很好的胜率,就意味着业绩有了稳定性,‘所看即所得’,投资者就会有信心。”
国内量化投资发展前景乐观
对于量化投资在国内的发展前景,叶乐天持乐观态度。他认为,随着A股股票数量越来越多、质地越来越好,以及数据越来越全面,量化投资的优势也会越来越明显。
“量化模型能在短时间内覆盖几千只股票,其核心在于大数定律,即只有选股的次数足够多,胜率才有意义。因为持股数目较多,相对分散,所以,组合的收益也会比较稳定。”他说。
什么样的市场更能发挥量化投资的优势?叶乐天给出了自己的答案:“首先,市场要有足够的广度和深度,投资标的可选择范围足够大。现在A股市场有几千只股票,表面来看可选范围较大,但实际上可投资的股票并不多,这和港股比较接近。所谓‘可投资’,是指流动性够好,市场对它的信息挖掘和关注度也足够。其次,数据量一定要大,保证可以获取到可靠的数据。可靠的数据,包括交易量是可靠的,成交的数据是可靠的,且分析之后还是可靠的。第三,市场要有一定的无效性。量化投资赚取的相当于是人性弱点的钱,如果市场完全有效,就很难获得超额收益。”
他举了一个简单的例子:投资者在亏损的时候往往不愿意卖,而在赚钱时则倾向于获利出局。“理性来说,买卖的操作是要看市场未来的涨跌,这和投资者本人是亏损或赚钱没有关系,但大部分人做不到这一点。”
叶乐天同时表示,制约量化基金优势发挥的因素也有几点:“一是市场波动率。对于量化基金而言,市场波动率非常重要,超额收益和波动率基本上是成正比的。在2015年和2016年,由于市场波动较大,阿尔法收益很好做,量化基金也因此大放异彩。二是市场出现极端行情。由于量化基金持股分散,因子设置比较均衡的量化基金在全市场走势趋于一致的行情中更容易有所表现。三是市场风格。量化投资属于非常右侧的一种交易,只有趋势形成了才会去跟上,因此,不可能提前预测因子的有效性。如果风格经常变化,模型往往来不及调整。例如,今年1月沪深300表现较好,2月、3月、4月中证500表现较好,5月、6月又是蓝筹股占优,风格的变化增加了量化基金投资的难度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09