
神经网络入门之bp算法,梯度下降
本人作为一个想进行NLP研究的新手,看了很多网络上很好的神经网络的入门代码和数学原理。但是个人数学比较烂,很多东西想了很久才想明白,又害怕忘掉。为此写下这篇大白话入门篇作为自己学习的一个记录,也想为跟我同样想入门的同学们一个参考。希望有问题多多交流。
备注:很多内容都是本人自己想当然的结果,有错误的话,望大神们多多指教。
废话都说完了本文将从一个最简单一个BP网络开始讲起。
bp网络的bp(back propagation)中文就是反向传播的意思,为什么反向传播呢。是为了将配合梯度下降法进行迭代求出好的结果。这个会稍后讲解。
上图来自百度图片(懒得画了)
x为输入,w为权重,这个f(x)被称为激活函数(activation function)。如sigmoid,tanh等。他们的特点有一个就是可以容易的求出他们的导数(很关键)。激活函数的意义可以看这篇神经网络激励函数的作用是什么?有没有形象的解释?
可以看到输出的o = f(w1x1+w2x2+w3x3+w4x4) = f(∑WiXi)。
第一次运算的结果很明显就是上边的o。但是此时问题出来了,运算出来的o和实际的结果肯定式有误差的,该如何利用这个误差优化这个运算呢?也就是得到好的w呢?
此时就出现了反向传播这个过程。而配合反向传播的就是梯度下降法了。
现在很多同学可能会很晕,当时我第一次看的时候也很晕。
为了容易理解梯度下降法,建议去看Ng的斯坦福网课第二节,非常清楚。比我写的清楚多了。
梯度下降法是求(局部)最好的w。
设误差函数为:
y为实际结果,o为预测结果。
设激活函数f(x)为sigmoid函数,此时就可以很方便的求出其导数了(其他激活函数也是一样)
所以我们要求的就是J最小的时候wi的值。a是变化的速率。下式就可以比作从山顶走到山底的过程,而a表示行走的步长或者是速率。
此时可以发现每一项都是可以求出的,则经过多次运算,可以求出好的Wi
一般我们把前两项作为
此时我们可以发现
上边介绍完了梯度下降,现在再说反向传播理由。其实很简单了。它用的就是链式法则。我们第一步是前向传播,进行一系列运算得到了预测结果o。为了使用梯度下降法,我们需要得到,上边需要的delta,也就是说 J 这个误差函数。因为实际结果我们知道,而激活函数的导数我们也知道怎么运算。所以我们得到预测结果o时,delta就可以求出来。而delta属于输出层的运算,再乘以输入层的Xi就能得到∂
Wi,进一步更新Wi。
很明显可以看出整个一轮的运算是:
前向传播:
输入层—-w—》输出层(sigmoid)—-》预测结果
后向传播:
误差—》输出层(sigmoid)求导—-》输入层—–》更新Wi
换句话说,BP算法就是提供了给梯度下降法所需要的所有值。
由链式法则可知,如果网络层数为3层以上时也可以得到每层的delta。
用python代码来说:
layer_n_delta = layer_n+1_delta.dot((W_n_n+1).T)
(W_n_n+1) += (Xn).T.dot(layer_n+1_delta)
上边有很多符号有点问题,但是我觉得阅读应该没有什么障碍。因为第一次用这个marddown编辑器,很多东西不好弄。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09