
神经网络入门之bp算法,梯度下降
本人作为一个想进行NLP研究的新手,看了很多网络上很好的神经网络的入门代码和数学原理。但是个人数学比较烂,很多东西想了很久才想明白,又害怕忘掉。为此写下这篇大白话入门篇作为自己学习的一个记录,也想为跟我同样想入门的同学们一个参考。希望有问题多多交流。
备注:很多内容都是本人自己想当然的结果,有错误的话,望大神们多多指教。
废话都说完了本文将从一个最简单一个BP网络开始讲起。
bp网络的bp(back propagation)中文就是反向传播的意思,为什么反向传播呢。是为了将配合梯度下降法进行迭代求出好的结果。这个会稍后讲解。
上图来自百度图片(懒得画了)
x为输入,w为权重,这个f(x)被称为激活函数(activation function)。如sigmoid,tanh等。他们的特点有一个就是可以容易的求出他们的导数(很关键)。激活函数的意义可以看这篇神经网络激励函数的作用是什么?有没有形象的解释?
可以看到输出的o = f(w1x1+w2x2+w3x3+w4x4) = f(∑WiXi)。
第一次运算的结果很明显就是上边的o。但是此时问题出来了,运算出来的o和实际的结果肯定式有误差的,该如何利用这个误差优化这个运算呢?也就是得到好的w呢?
此时就出现了反向传播这个过程。而配合反向传播的就是梯度下降法了。
现在很多同学可能会很晕,当时我第一次看的时候也很晕。
为了容易理解梯度下降法,建议去看Ng的斯坦福网课第二节,非常清楚。比我写的清楚多了。
梯度下降法是求(局部)最好的w。
设误差函数为:
y为实际结果,o为预测结果。
设激活函数f(x)为sigmoid函数,此时就可以很方便的求出其导数了(其他激活函数也是一样)
所以我们要求的就是J最小的时候wi的值。a是变化的速率。下式就可以比作从山顶走到山底的过程,而a表示行走的步长或者是速率。
此时可以发现每一项都是可以求出的,则经过多次运算,可以求出好的Wi
一般我们把前两项作为
此时我们可以发现
上边介绍完了梯度下降,现在再说反向传播理由。其实很简单了。它用的就是链式法则。我们第一步是前向传播,进行一系列运算得到了预测结果o。为了使用梯度下降法,我们需要得到,上边需要的delta,也就是说 J 这个误差函数。因为实际结果我们知道,而激活函数的导数我们也知道怎么运算。所以我们得到预测结果o时,delta就可以求出来。而delta属于输出层的运算,再乘以输入层的Xi就能得到∂
Wi,进一步更新Wi。
很明显可以看出整个一轮的运算是:
前向传播:
输入层—-w—》输出层(sigmoid)—-》预测结果
后向传播:
误差—》输出层(sigmoid)求导—-》输入层—–》更新Wi
换句话说,BP算法就是提供了给梯度下降法所需要的所有值。
由链式法则可知,如果网络层数为3层以上时也可以得到每层的delta。
用python代码来说:
layer_n_delta = layer_n+1_delta.dot((W_n_n+1).T)
(W_n_n+1) += (Xn).T.dot(layer_n+1_delta)
上边有很多符号有点问题,但是我觉得阅读应该没有什么障碍。因为第一次用这个marddown编辑器,很多东西不好弄。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07