
量化与策略投资之间的关系
随着我国多层次资本市场的建立,多种金融衍生品工具的不断推出,使得以市场逻辑和历史数据统计为基础的量化投资策略愈发受到投资者的重视。但今年以来,量化投资策略却一反常态,整体表现不佳。据央证量化基金指数的走势来看,今年一月中下旬,该指数出现较大回撤,走势开始跑输沪深300。这引发了业内对量化和传统投资的广泛热议与重新审视,各路人士均展开讨论,各抒己见。
对于量化和主观的优势与区别,区别两者的各自优势主要看市场环境、投资逻辑与赚的是什么钱。如果是赚对手的钱,需要的是严格的纪律和执行力,有胜算才出手,量化就相对更有优势,容易控制风险,因为主观投资可不是每位投资者都有良好的执行力;但如果是比较定性层面的策略,赚经济增长和企业盈利的钱,那绝对还是需要一双慧眼,用主观投资策略,但也可使用电脑程序处理一些简单而繁琐的事情,这相当于一个赚钱加速器。最重要的关键是把握住两者的优势和缺点,扬长避短才是关键。在关键的时点,主观更能体现对市场突发事件的敏感性,而量化就相对滞后一些。
而一名具有主观10年、量化6年的交易经验的资深人士的体会是,主观交易,要看重研究团队,而量化交易,则看重IT团队;主观交易,要盯盘,而量化交易,每天晚上刷一遍数据即可;主观交易,管理规模达到5亿会很累,而量化交易,管理规模达到100亿还会有扩充空间。
与以上偏向于量化策略的观点不同,也有人表示,主观交易也好,量化交易也好,核心都是要有交易思维。纵观国内,目前交易思维做的好的还属主观交易较多,由于量化刚刚起步,加上目前国内市场基础制度的缺失,量化短期很难有大作为。最关键的是,很多做量化的投资者缺少主观那种顺变的交易思维,容易一条道走到黑。
其实,在主观和量化的道路上,两者并不是绝对对立的,至少在方法论和配置管理上是有相通之处的。无论主观交易还是量化交易,首先要注重配置,其次才是策略。
量化投资在海外的发展已有30多年的历史,对于量化和主观到底哪个更适合投资策略,到底哪个投资派别的业绩表现更为出色,海外媒体舆论也是争论不休。
量化和主观这两种不同的投资方法,做的拔尖都会很厉害,做的不好也都会很糟糕。所以这个比较还是要有个可比性,比如做的最好的主观和最好的量化对比,或者两种策略都各取50只基金,取它们的各个平均指标进行不同周期的比较,大概就可以归纳出二者的特点了。他个人觉得从交易规则这个角度来看,如果主观投资的交易规则非常明确,那么就可以量化为数学模型,也就成了量化投资。反之,量化投资无非是各种主观交易规则的数量化。
对于投资者在量化和主观两者中如何权衡找到最佳的交易策略,稳健持续的投资收益来源于对有效投资机制或逻辑的总结,不管是量化或者主观,都是某种投资逻辑的体现。投资贵在化繁为简,量化作为工具,可以把大量的信息具体化简单化,便于投资决策,因此,量化在这方面要优于主观;但主观投资的优势在于对价格变化背后交易行为、心态的解读,这是量化目前很难实现的。投资最讲究从容心态,找到适合自己的方法才能长期存活。
每个人都有一套适合自己的投资体系,不管是量化还是传统投资,适合自己就是最好的,对自身不熟悉的领域没有发言权。个人的想法是,要花费时间和精力潜心专研,通过无数次的实践交易不断验证、反复总结,逐渐形成一套自己的交易体系,日后持之以恒地坚持完善、不断更新。
而就目前情况来看,量化是趋势,最起码它是一种技术趋势,大数据、人工智能技术的不断突破使得量化方法正在加速向实践转化
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08