
区块链和人工智能技术能否加速物联网经济的到来
区块链、人工智能和物联网都是如今非常流行的科技名词,它们不仅拥有各自的特点,还能够互相利用互相促进。本文对人工智能和区块链如何实现物联网经济进行了分析,指出这些新技术可能改善人们对大数据的访问及交换,使设备更加智能,帮助用户通过自己的设备直接获利。
被称为物联网(IoT)的连接设备集体网络正在不断增长。高德纳咨询公司(Gartner)估计到2020年将会出现84亿物联网设备。这种增长预计大部分将出现在消费者设备领域,因为更多消费者会持有智能设备。预计企业也会加大采用以提高生产效率并使行业应用最大化。
人工智能(AI)和机器学习(ML)方面的进步会使智能设备变得更加智能化。物联网会共同生成大量的数据,并具有多种多样的功能,从而反过来用于指导和改进算法,使技术更好地发挥作用。
物联网的这些发展可能会改变世界。例如,智能温控器可能被一些人视为新奇事物,但是,这些设备实际上可以防止停电等可能出现的事件。暖季期间能源需求可能会很高。人工智能就可以监测温度设置和家庭与公司的能源消耗,并远程自动调整这些智能温控器以防断电。
数据可被视为改善物联网设备的基础,因此对于开发人员来说,更好地获得信息是至关重要的。但不幸的是,信息交换目前仍充满挑战,尽管人们正在努力改变这种情况。例如,由区块链驱动的数据流服务公司Streamr就正在推动更民主的数据交易方式,BDEX和Terbine等大数据市场则在把大数据所有者与开发人员联系起来。
1使人们能够访问大数据
一般来说,公司和开发人员必须收集和存储自己的数据,才能获取大数据。如果他们需要数据多样性,那么他们可能不得不向外界寻求这样的信息,这项工作也因此更具挑战性。许多小企业也可能缺乏资源来开展一些项目,因为他们无法利用大数据。
更令人沮丧的是,由于可访问的大数据数量有限,组织本身在使用一切时都会遇到困难。根据Forrester的数据,企业内部多达60%到73%的数据在分析中都得不到应用。有价值的信息可能只被闲置在数据仓库和数据湖泊中。
大数据所有者不会让数据在存储中“死亡”,而是会参与像BDEX这样的市场,使他们的数据可供有需要的人使用。他们甚至可以通过这样做获得收入。
2区块链与物联网
区块链在多个领域(包括物联网)得到了越来越多的采用,也因此获得了极高的热度。其透明且不可变的特点在物联网安全等方面能够得到利用。鉴于不安全设备遭劫持或被用作僵尸网络的风险越来越高,该技术成为一种深受欢迎的进步。
更多开发人员现在可以通过以太坊区块链为其各自的用途实施智能合约。这种技术可通过编程与物联网设备一起工作,这些设备中的数据可以触发自动化任务。
从数据方面来看,区块链甚至可以使数据交换更加民主。由区块链驱动的数据流平台Streamr为所有人提供去中心化手段来购买和销售数据。该平台允许数据所有者轻松连接到对等网络并传输他们的数据,其他人可以购买获得数据的权限。Streamr的市场使用区块链智能合约及代币来促进交易并激励数据交换。
Streamr的目标是使人们能够通过实时数据的价值盈利。无人驾驶汽车就能够很好地解释其服务。Streamr首席执行官Henri Pihkala写道:“为了实现最佳操作,它需要不断通过其他机器获取数据,例如来自其他车辆的交通拥堵信息、周边充电站的价格及天气预报等等。Streamr为实时数据交付和支付提供单一接口,使人们和机器能使用加密代币DATAcoin交易数据流。汽车可以自动获取其所需的数据并进行支付。反过来,汽车还可以销售它所产生的数据,例如向其他汽车销售交通数据,向智能城市销售路况测量值,向广告商销售位置和电池用量信息等。这样,数据流经济就诞生了。”
3物联网经济
这种去中心化方式的优势在于它使数据所有者能够随意地通过自己收集和生成的数据获利。他们能够按照自己的意志进行这种活动,直接通过数据盈利,而不用通过中介来进行。
区块链的透明特点还能在用户中形成一种信任感。可以使用声誉系统等机制来帮助潜在买家识别高质量数据来源。由于这个市场向所有人开放,它可能有助于实现由市场驱动的定价,而不是由少数垄断性实体来决定价格。
这种方式还有可能为物联网创建一个更加包容的生态系统,使高质量数据能够更自由地进行交换。更多的参与者也意味着更多可访问的数据来源。这反过来又有助于推动应用程序和物联网设备的改进,从而完善其性能。
区块链作为催化剂能够鼓励用户间的公开数据交换,其去中心化特点能够打破有用数据访问受限的现状。随着数据交易新方式的出现以及硬件与人工智能的不断发展,更多激动人心的创新一定会出现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29