
量化投资策略分为哪些策略?量化投资策略有什么优势
量化投资策略,就是采用数学模型来分析股市历史数据,用计算机来判断未来走势的一种投资策略。那么量化投资策略有哪些?越来越多的私募公司成立自己的量化投资团队,这种量化投资有什么优势呢?接下来,私募排排网为大家介绍量化投资策略的分类和优势。
量化投资的策略有哪些?
根据排排君总结的三个关键词,它的投资策略也基本可在此基础上得以展开。为了方便理解,排排君将量化策略简单分成以下几类:
1、量化对冲
其实,量化和对冲本身并不是“一家人”,之所以最终能“终成眷属”,是因为二者结合后能获得超额收益的“结晶”。
举个例子:排排君利用量化方法,选出能够跑赢指数10%的股票并买入。当市场上涨20%时,排排君的股票就上涨了30%。但排排君此前已经做了对冲操作,即做空指数(卖空股指期货),所以会在指数做空上丢掉20%的收益(做空意味着看跌),这样一增一减会净赚10%;相反,如果市场下跌20%,那排排君则会损失10%的收益,但由于之前做空指数,排排君会因为做空赚20%,一减一增依然净赚10%。
是不是很神奇?!这就是量化对冲的魅力!而这种方法,也被大家称为市场中性策略。
2、多因子选股模型
具体的选股模型非常复杂,但别怕!原理很简单。
多因子选股,就是以多个因子作为参照标准进行选股,这跟咱们找工作、找房子等等是一样一样的,只是它的叫法高大上罢了。
找工作的话,咱们要考虑它的薪资水平因子、公司发展前景因子、岗位匹配因子等等。找房子的话,要考虑它的交通配套因子、小区卫生、噪音、安全因子等等。所以,选股也是一样。不过,选股的因子很多,专家们就把这些因子分成了四大类:技术类,像价格、交易量、波动率等;基本面类,如价值因子、成长因子、公司债务因子等。研究类,如研究报告、目标价格、盈利预测、评级等。其它类,如机构持仓、媒体关注因子等。
正是因为因子太多了,不可能全面考虑,所以,专家们就做了一个模型,根据因子的权重,进行综合加权考虑。
而引入多因子的目的,就是为了让收益更加稳健,波动更少。找房子时,考虑的因素越多,或许最终选择的就越好;找工作时,综合权衡后的岗位或许更令你满意。换成量化投资的话,夏普比率越高,单位风险带来的单位收益也就越高,反过来想,单位收益的波动将引起更小的单位风险波动。所以,引入的因子越多,收益就更稳健,收益曲线就越平滑。
我们可以看到图中随着因子数目的增长,它的收益曲线的变化会变得越来越平滑。因子数由30个变成120个的过程中,其夏普比率也从0.8变成2.2。
3、量化择时
择时,不仅困扰这个人投资者,也同样令机构投资者很头疼。如果说量化选股解决的是超额收益的问题,那么量化择时解决的则是相对收益的问题。
而所谓量化择时,则是对各类预测指标的应用,通过分析并得到对市场未来方向的预判。常用的择时方法有:趋势量化择时、市场情绪量化择时等。
趋势量化择时
趋势量化择时基本可以认为是趋势投资的延续,若趋势发生逆转则需平仓止损。与趋势投资一样,趋势量化择时具有滞后性,只有市场出现了某种趋势后,才可顺势操作。
市场情绪量化择时
市场情绪量化择时就是利用投资者的热情程度来判断大势方向,当投资情绪高涨,大家积极入市时,大盘可能会继续涨;当投资者情绪低迷、不断撤出市场的时候,大盘可能继续下跌。
当然,量化择时还有其他的方法,受限于篇幅这里就不再展开。
量化投资的优势在哪?排排君可以总结道以下几点:纪律严明、反应迅速和分散风险。
1、纪律严明
市场不会随着人的意志而转移,我们唯一能控制的只有自己。量化投资在既定的计算机程序下,会根据市场行情严格执行投资策略,就像咱们遇到市盈率较低的个股时,可能会立刻买入,也可能会继续等待更低的买点。但量化选股则直接精确到数值,只有触发选股条件才会操作,完美地克服贪婪、恐惧、侥幸心理的人性弱点。
2、反应迅速
这更多的是体现在重大事件、黑天鹅等事件驱动策略方面。计算机媒体能处理大量的公告和新闻,实时跟踪市场变化,所以在遇到重大利好或黑天鹅事件时,同样也能够第一时间把握机会或逃脱。
3、分散风险
利用计算机大数据,量化投资可以做到比证券分析师更好的历史回测,不断地从历史中挖掘有望在未来重复的历史规律并且加以利用,而历史规律都是较大概率取胜的法宝。另一方面,就回到了选股方面,通过多因子选择一揽子股票,从而捕捉大概率获胜机会。
好,以上就是今天关于量化投资策略分类以及量化投资策略的优势的全部内容。下面私募排排网给大家总结一下:量化投资策略分为量化对冲、多因子选股模型和量化择时三种策略。量化投资策略主要的优点在于它纪律严明,克服了贪婪、恐惧、侥幸心理的人性弱点,而且能够在第一时间把握机会或者避险,捕捉大概率的获胜机会。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08