
迎接2.0时代 多维度掘金量化投资“富矿”
在“阿尔法狗”引爆人工智能话题后,量化投资也在逐渐改变着资本市场的版图。业内人士认为,数量化在A股投资上的应用趋势会远远超乎人们的想象。
截至2017年底,海外对冲基金量化规模达上万亿美元,占总规模的34%,而国内量化投资领域目前的规模占比不到5%。这意味着,量化投资在A股市场有着巨大发展空间。
正是看到了这样的机遇,夏笑峰选择回到国内,加入弘尚资产,打造一个高起点的量化投资团队。
作为威灵顿资产管理公司前副总裁,夏笑峰拥有12年全球股票量化投资经验,曾研发并管理新兴市场、全球低波动率、15个国家股指期货对冲、事件驱动4个量化基金产品,管理规模合计达到33亿美元。
多年的投资经验,让夏笑峰能够更为清晰地判断国内量化投资市场的发展趋势。在他看来,目前国内量化投资正进入2.0时代。依靠简单的多因子选股在A股赚钱的时代已经过去,而以基本面为主的多因子选股将迎来巨大发展空间。
前瞻布局 迎接量化投资2.0时代
从夏笑峰的简历来看,这是一位名副其实的“学霸”。武汉大学数学本科毕业之后,他接连攻读了北京大学应用数学硕士、艾默雷大学(Emory)数学系硕士及卡耐基梅隆大学(CMU)金融工程硕士。
熟悉他的同事这样介绍他:“马拉松和铁人三项运动爱好者。精通应用各类量化策略,对多因子量化选股、建立风险模型、投资组合构建和优化、聪明贝塔、风格轮换和事件驱动等领域有着丰富的经验,对全球宏观经济、各类金融资产长期回报和短期趋势都有着深刻的见解。”
加盟弘尚资产之后,夏笑峰打造了一个高起点的量化投资团队,将团队成员扩充至5人。谈及这个团队的特点,夏笑峰介绍说,目前市场上很多机构以高频量化为切入点,而我们选择了做低频量化。
为什么作出这样的选择?夏笑峰解释说,高频量化有两个约束条件:一是规模比较难做大;二是需要波动率比较高的市场环境。相对而言,低频量化更容易做大规模。海外量化投资资产规模主要还是在低频领域。
在经历了一波快速发展后,国内量化投资出现了波折。去年,小市值因子暴露较多的量化基金表现较差,而拥有12年海外投资经验的夏笑峰早就看到了一大趋势——量化投资2.0时代正在到来。
夏笑峰坦言,A股在2013年至2017年间,快速走过量化投资1.0时代,当前量化投资2.0时代已拉开帷幕。弘尚资产的量化团队早已开始布局2.0时代,不再使用简单的因子。
“价值和趋势因子在新兴市场都是非常有效的。”这是夏笑峰的经验之谈。他坚持认为,在任何市场,价值都应该是有效的。对价值的认识要精细化,要从各个不同角度去刻画价值,将所有看法通过因子建模的方式汇总,最终形成价值判断。
量化投资有助于克服人性弱点
如果说投资最大的天敌是投资者自身的情绪,那么量化投资注定是人类弱点的“救星”。量化投资基于现代行为金融学的投资理论,借助现代统计学和数学的方法,努力克服市场情绪的侵蚀。即便是在弱市中,如果策略得当,也能取得相对稳健的收益。
历时一年多时间的模型开发和持续调试优化,弘尚资产的量化团队所开发的多种策略均投入实盘运作,并取得了良好的实测结果,在量化多头策略和市场中性策略上都取得了领先于同类产品的收益。
据悉,夏笑峰引进了海外成熟市场的先进理念和量化投资体系,在国际经验之上融合了对A股市场的深刻理解,自主研发了多因子选股、风险模型、交易成本模型、CTA、商品期货市场中性等,建立了覆盖事前、事中、事后全流程的风险监控,并实现了量化投资全程自动化,最后形成目标优化投资组合。
夏笑峰强调,所有数据和因子的选择、模型的构建都是本土化研究的成果。此外,该量化团队还得到了弘尚资产强大的主动权益投资团队的支持。他表示,在量化因子的选择上,会经常与弘尚的主动权益投资团队进行讨论,并挖掘出一些行业特质化的因子。
产品布局方面,夏笑峰表示,弘尚量化产品目前主要有股票和期货两类,股票策略主要包括指数增强、量化多头、贝塔中性、择时对冲等,而期货策略主要涵盖统计套利、商品期货市场中性与商品期货CTA。
接下来,他还将尝试做期权方面的产品,比如期权的套利、对冲等。此外,融券对冲也在积极推进。
谈及量化投资未来的发展趋势,夏笑峰认为,以基本面因子为主的多因子选股在A股市场拥有较大的发展空间,而另类数据、“基本面+量化”是量化投资未来发展的方向,基于深度学习的AI算法在高频交易领域值得尝试。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08