京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一文看懂量化投资的优缺点
常见的投资思路有主动投资与被动投资这两种,而近年来开始逐渐兴起了介于两者之间的一条道路,即量化投资,采用主动的思想去设计,但采用纪律化计算机的方式去执行交易。三者简单差别如下:
可以看出,量化投资的特点就是,既承认主动投资在投资思想上具有超越固定指数的创造能力,又认为完全主观交易会受人性影响,可能创造负价值,因此要类似被动投资一样,纪律化实现。
有人觉得量化投资是黑箱,其实并不是这样的,我们通过说明量化投资的实现方式来说明量化投资可以很白很清晰。这里还是用三种投资方式来进行对比。
举个例子,比如我们认为购买低市盈率的股票具有超额回报,那三类投资者会怎么做?
第一步,确立和检验投资思想
1、主动投资:A、B、C这些牛股,在上涨前市盈率都很低,所以市盈率低很重要。
2、量化投资:假设历史上每年初等权买入市盈率最低的50个股票,模拟看收益怎么样,是否很好。
3、被动投资:好像挺有意思,但是我跟踪指数,这事与我无关。
第二步,投资实现
1、主动投资:把市盈率低作为筛选股票的一个条件,具对公司体调研,选出其中5只觉得好的买入。
2、量化投资:每年初等权买入市盈率最低的50个股票。
3、被动投资:与我无关。
可以看出,在这个例子里面:
1、主动投资是把市盈率低作为一个看公司的参考,去买公司。
2、量化投资买的是市盈率低这一规律,不在乎买的公司个体是谁。
3、被动投资不考虑这些。
量化为了去验证投资思想在历史上是否整体有效,就需要做历史模拟,涉及到大量数据,因此做量化投资往往需要比较强的计算机和数理技能,通过计算机编程来实现这些;然而计算机技能只是工具,核心还是在于对金融市场的理解,这一点与主动投资无异。
那么历史来看,三种投资方式业绩怎么样?为了样本可比,我们分别考察国内股票型的主动、量化、指数投资情况。由于量化投资在国内兴起时间较短,这里仅考察了一点中短期数据作为参考。
值得注意的是,在选取量化基金样本时,我们并不是直接选取名字里有量化字样的基金,而是选取含量化名字且其中第一重仓股权重不超过5%的基金,因为量化基金通常要做分散化投资。而随着量化基金被客户的接受度提高,一些可能并没有真正采用量化方法投资的伪量化基金也愿意加上“量化”名字。
可以看出,从三年维度的较长时间来看,量化投资整体业绩优于主动投资,但是在最近的2017年,量化投资整体表现差强人意,不如主动投资。为什么会出现这种情况?因为自2017年起,A股监管环境发生了很大变化。这也反应了量化投资的特点,在规则稳定的环境下,擅长持久战;但是在规则剧烈变化时,应变能力仍有待提高。
总结:
1、量化投资是介于主动投资与被动指数投资的中间道路,兼顾投资思想的主动和执行的纪律。
2、近年来量化投资表现略优于主动投资与指数投资,但2017年的极端分化行情中量化投资表现不佳。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08