
量化投资中的神奇特点
提起量化投资,不能不提西蒙斯。经历了1998年俄罗斯债券危机和2001年高科技股泡沫危机,许多曾经闻名遐迩的对冲基金经理都走向衰落。罗伯逊(JulianRobertson)关闭了老虎基金,梅利韦瑟(JohnMeriwether)的长期资本管理公司几乎破产,索罗斯的量子基金也大幅缩水。
西蒙斯的大奖章基金的平均年净回报率则高达34%,而同期的标准普尔指数仅是9.6%。不过,文艺复兴科技公司所收取的费用,更高得令人咋舌。一般对冲基金的管理费及利润分成的比率分别为2%和20%。但文艺复兴所收取的费用分别为5%和44%。如果把费用考虑在内的话,该基金的平均年回报率在60%。这是一个真实量化投资的传奇。
1-洞悉vs模型,谁重谁轻?
西蒙斯仅仅是量化投资的代表之一,世界上存在成千上万的量化基金,所采用的投资策略也多种多样,不过,所有的策略都可以放在一个投资策略光谱中。在光谱的一端是,重模型、重技术的黑箱投资模型。作为量化投资的重要领域之一,对冲基金行业一直拥有“黑箱作业”式的投资模式,可以不必也极其不愿意向投资者披露其交易细节。而在一流的对冲基金经理之中,如上面提到的西蒙斯先生的那只箱子据说是“最黑的”。西蒙斯的量化投资对于专业投资人也都是一个“迷”。除了现在和过去服务于文艺复兴科技公司的人士外,没有人知道西蒙斯是如何赚钱的。
西蒙斯一点也不喜欢华尔街的投资家们。事实上,如果你想去“文艺复兴科技公司”工作的话,华尔街经验反而是个瑕疵。在公司的200多名员工中,将近二分之一都是数学、物理学、统计学等领域顶尖的科学家,所有雇员中只有两位是金融学博士,而且公司从不雇用商学院毕业生,也不雇用华尔街人士,这在美国的投资公司中堪称绝无仅有。
“文艺复兴科技公司”拥有一流的科学家,其中,包括贝尔试验室的著名科学家PeterWeinberger和弗吉尼亚大学教授RobertLourie。他还从IBM公司招募了部分熟悉语音识别系统的员工。“交易员和语音识别的工作人员有相似之处,他们总是在猜测下一刻会发生什么。”
在光谱的另外一端是,重思想、重洞悉力的白箱投资模型。这种投资策略都不约而同地继承了BGI的衣钵。其模型貌似复杂和玄虚,其实就是一个简简单单的多因素模型。上个世纪就有包括BGI和高盛等金融机构的从业人员和众多大学教授无数次详细地描述过这个模型。对于白箱投资模型,其成功的关键已经不是顶级的科技,而是对市场的理解、洞悉和适当的参数化。白箱投资的另外一个合适的表述是“定性思想的定量运用”。
在光谱的中间是,既重视思想和洞悉,又重视模型和技术开发的。
总之,要么拥有顶级的模型技术,要么拥有对市场的一流的洞悉并能把这种洞悉恰当地转化为模型,二者必据其一,当然,最好两者都综合具备,此乃量化投资成功关键。
2-数量基金的模型将更加多样化
数量化基金曾被媒体渲染得很神秘,甚至质疑是黑箱操作,因为许多基金都声称自己使用的是有自己知识产权的模型进行投资,这些模型甚至对这些基金的投资者也密不可宣。实际上,在绝大多数数量基金的黑箱子里装的都是一些多因素模型,计算机根据一些复杂的模型和多个参数来选股和判断买卖时机,这些参数少则4、5个,多的有几十个。
选择目标公司的关键参数通常包括以下一些方面:估值贵贱、市值大小、品质高低、成长性和流动性的好坏,还有与股价相关的其他市场因素,包括动量指标和反转指标——前者指股价会延续过去的趋势,而后者指股价会触底反弹。后来,数量化模型被添加了更多的因素,包括短期市场指标、管理层的行为甚至媒体的报道,这些因素也被赋予不同的权重来评估目标公司是否具有投资价值。
当然,尽管这些模型都是不完全一致的,但这并不意味着他们的交易不会出现一致。CPPI策略就是一个例子。2007年次贷危机出现之后,如何令模型变得更加多样化,是目前数量基金的主要课题,其中,增加更多的参数似乎是当前市场的主流趋势(近期海外各大券商的数量策略报告对模型参数方面都有所增加)。值得一提的是,行为金融学虽然是一个新兴的、未经市场考验的发展方向,但对此感兴趣的人正在日渐增多。
3-数量模型vs基金经理,应该并重
关于数量化基金的争议似乎一直也没有停止过,不认同的人一直会表示:“现实世界是极为复杂的,机器无法代替人脑来判断”。而认同数量基金的人会说:“计算机比人更加严谨,不带任何感情因素和人性上的弱点。”可能正确的做法是二者兼顾。
在市场出现转折,或者小概率事件的时候,计算机肯定是无法代替基金经理的判断。在一个波动剧烈的非单边市的市场环境下,数量模型对新的数据的反应也并不令人满意。我们认为,计算机模型的作用在于在市场正常的情况下,极大地减少基金经理的工作量,并且能减少由于人的不正常情绪带来的失误。同时,模型和计算机都是为人来服务的,需要经验丰富的基金经理来指导模型开发,解读运行结果。模型对于基金经理而言,是一个不知疲倦的(日夜运算),对贪婪和恐惧免疫的好助手。
未来的投资行业可能是这样:一个基金配上2、3个数量分析师,由多个外部的经纪商提供基本面的研究支持,自身公司的行业研究员则挖掘额外的市场信息,数量分析师将所有信息填充到数据库当中,并利用模型进行分析,最终由基金经理进行投资方案设计。
那时,基金经理们不必把精力放在琐碎的日常信息的分析上,实际的主要工作也不是调研上市公司和选股,更多的是考虑市场趋势的变化、结构的变化,以及该向模型中添加哪些新的信息。投研总监们更可以潇洒一些,他们只负责在市场的特殊时期决定采取怎样的策略应对,也许就是更多去考虑“黑天鹅”事件。
由于市场在变,模型也需要变,在基金经理眼里,模型永远是一台新开发的战斗机。正如晨星公司的基金分析师GregCarlson说:“使用计算机模型并不意味着你坐上了一辆自动驾驶的汽车,你必须有一支研究队伍不断挖掘新的信息并添加到你的模型当中去,否则要么是一些新的风险因素不能被模型所识别,要么就是白白错过了一些获利的机会。”市场变化并不是坏事,虽然市场变得崎岖不平,依旧乐观者也不是没有,例如,AXARosenberg基金公司执行官SimonVanstone就表示:“市场的波动增加通常对我们有好处,因为它将导致更多的资产定价错误,而这正是我们可以通过我们的模型去辨识和把握的投资机会。”
要让模型很好地工作,需要对市场的洞悉和把握、对模型的理解和运用,时刻警惕模型的弱点和风险——始于怀疑、终于确信。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08