
普通投资者如何进行量化投资
1.什么是量化投资?
打个比方来说明这种关系,我们先看一看医生治病,中医与西医的诊疗方法不同,中医是望、闻、问、切,最后判断出的结果,很大程度上基于中医的经验,定性程度上大一些;
西医就不同了,先要病人去拍片子、化验等,这些都要依托于医学仪器,最后得出结论,对症下药。
定性投资更像中医,更多地依靠经验和感觉判断病在哪里;定量投资更像是西医,依靠模型判断,模型对于定量投资基金经理的作用就像CT机对于医生的作用。
说的再直白点,就是在金钱面前,人类更愿意去相信成熟的套路,趋利避害和利益最大化毕竟人类的天性啊!
2.量化投资,这不是一般人能玩的起的
在懵懂的时候听到“量化投资”这个名词时,脑子中第一个反应竟然是
确实,这个名词的确不是平头老百姓(81.35 -2.18%,诊股)能触及到的领域....
不少量化投资产品的主要客户来源大多都是以银行,保险,私募,对冲基金以及一系列投资机构为主,即便开放给普通投资人最低也都是几百万起步...
那么普通投资者如果要进行个人投资,如何入门呢?
第一部分:知识储备
好,明白了学习的方向,我们就知道自己需要学习以及掌握的内容了。从这个方向内容来看,在学习量化之前,我们需要具备一些基础知识,否则我们都看不懂呢。
1、数学
数学是一切的基础,扎实的数学功底还是很重要的。由于数学相关教材太多了,就不一一列举了,主要还是看个人对数学各学科的理解、联系和运用。对于初学者来说,掌握微积分、线性代数、概率统计这些最基础的就可以了,既可以运用又可以看懂大部分教程。
2、计算机
量化所有的一切都要在计算机上实现,这就需要有一定的编程能力,至少要掌握R,Matlab,Python等脚本语言。当然,如果要做高频,那么还需具备高级的C++编程能力以及性能调优能力。
除了基本的编程能力外,机器学习、数据挖掘、人工智能等好用的量化工具也需要有一定的了解。这里为大家推荐一本网友推荐频率极高的书。
《集体智慧编程》作者:Toby Segaran。
这本书选择的是Python语言,以机器学习与计算统计为背景,专门讲述如何挖掘和分析Web上的数据和资源。可以说是数据挖掘的入门书籍,它将机器学习算法这一复杂议题拆分成实用易懂的例子,能够让初学者少走弯路。
3、金融投资
既然量化投资归根结底是一种投资,那么我们就需要对投资品、操作以及投资原理等有个基本的了解。股票、期货、外汇、衍生品、ETF等等,每种投资品、投资方式都有很多书介绍,作为初学者个人觉得只要找看的明白的就行了,有个简单的了解,等以后需要深入研究的时候再仔细选书。
这里为大家简单整理几本网友普遍推荐的经典入门级教科书。
《投资学》作者:凯恩/马库斯/博迪
这本书对于投资交易入门而言,体系完整,覆盖面比较广泛,可以让大家对市场有个基本认识,属于经典的金融投资入门课本。
《计量经济学导论》作者:杰弗里·M·伍德里奇
量化策略需要有一定的计量基础,毕竟大部分策略始终和时间序列以及面板数据打交道。这本书虽然不属于初级难度,但相对结构安排更合理。
第二部分:量化交易
在具备了数学、计算机、金融投资等等基础知识之后,我们就可以开始学习如何将量化这种手段运用到投资中。
1、量化入门
在入门阶段,大家可以找一些简单的介绍性的书籍,对量化投资有个全面的框架性的了解。这里可选择一些传记,比如说像这几本既趣味易懂,又可以了解有一些知识性的介绍。
《打开量化投资的黑箱》作者:[美]里什·纳兰
可以看做是入门的介绍书,比较全面的讲解量化交易的基本框架。
《解读量化投资:西蒙斯用公式打败市场的故事》作者:忻海
算是科普吧,虽然核心内容较少,但阐述了量化投资的一些基本方法和特点,属于量化投资的初级读物。
《宽客人生》作者:Emanuel Derman
一个由物理学家转行到金融领域的宽客自传。
2、经典策略
在了解量化投资的基本框架后,我们可以进一步学习那些经典的策略、模型,以及各种投资理论的运用。这里也简单列几本网友推荐的书,抛个砖。
《海龟交易法则》作者:柯蒂斯·费思
一本论述如何创建机械交易系统的书。有实例说明,对大体上把握策略研发的工作很有帮助。
《交易策略评估与最佳化》作者:Robert Pardo
这本书主要是交易策略的评估与最佳化的思路,对形成量化投资策略的研究思维有一定帮助。
《量化交易——如何建立自己的算法交易事业》作者:欧内斯特·陈
本书对个人投资者建立量化投资系统的过程做了很好的阐述。
《量化投资策略:如何实现超额收益Alpha》作者:理查德·托托里罗
本书涉及的模型类型覆盖面广,可以说作者是在对所有能够获得超额收益的策略进行了地毯式的搜索,并且提供了超过20种常胜投资idea的详细回测情况,充分展示了经验丰富的宽客是如何通过自己的想法来改进模型的。
3、实操进阶
准备了这么多,也看了这么多的书,最重要的还是进行实践,否则一切都是空谈。大家可以试着找个想法或已有的策略进行回测,然后根据结果调整,通过这个过程让自己熟悉策略开发。当然这个阶段,除了实践还需要补充更多新的知识和技术。大家可以根据自己的需求找相关方面的书学习,保持不断学习实践,才能有所进步。
说到这里,关于量化投资入门需要学习内容基本上也差不多了,下次为大家整理下量化投资入门涉及工具、平台。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29