
量化投资之父,为何被赌场拒之门外
索普,名副其实的“量化投资之父”。
虽然在毕业后,任职麻省理工数学教授,但是索普的内心最渴望的事情不是单纯的做一名教授那么简单,而是怎么样赚钱,那时候的索普每天都在想怎么样在赌场里赌钱,怎么样赌赢。
最初,在赌场里,索普的主要研究对象是21点,也就是Black Jack,同时也成功的研究出一套可以在赌场中稳赚的方法,全部的赌场都输在了他的手里。
接下来的时间里,轮盘赌又成为了他的新目标,经过观察和实验他成功的研究出能够隐藏在衣服里的扫描仪,只要球丢出去,扫描仪就会在黑暗中默默的工作,这还不算什么,在他的脚上还有一个秘密武器(控制器),只要他的脚轻轻的按动这个武器,它就会发出一道激光,这时他的计算设备就会利用读球的速度计算出球落在哪一个区里的概率是最大的,之后根据这个结果进行赌大小。
这足以体现出索普的聪明才智,这个系统他在家里反复的做了实验,实验结果也是非常成功的,可是后来在赌场,虽然赢了几笔钱,但是没多长时间就被人盯上了,最后导致赌场再也不允许他进入。
玩转权证市场,却错过诺贝尔奖
被赌场“封杀”之后,索普去了加州任职教授,同时认识了加州大学金融系的一位研究权证的教授,在当时,这位教授收集了非常多的权证数据,可是索普并不知道怎么样利用这些数据,怎么样利用它能够赚到钱,那就更没有头绪了。
但是,索普是很聪慧的,没用多久他就把这些权证数据了解透了,同时寻找到了其中的一个公式,这个公式也给他提供了再一次赚钱的机会。
过了两年的时间,芝加哥期权市场的突起,大家当时并不知道怎么样计算期权的价格,这也让大多数的科学家走上了研究权证的道路,之后费希尔·布莱克(Fischer Black)和迈伦·斯科尔斯 (Myron Scholes)研究和提出了计算期权的公式,也就在1997年,凭借着这个研究莫顿和斯科尔斯荣获得了诺贝尔奖,不幸的是费希尔·布莱克在1995年时,因为患癌症逝世,错过了诺贝尔奖。
其实,索普的公式和布莱克和斯科尔斯的公式之间的差距仅有那么一点点,同时这两位获奖者提出公式的前提是阅读了索普《战胜市场》这本书,通过索普的思路进行研究才提出的公式,所以,在他们完成论文之后,便亲自登门拜访了索普,跟索普说,能够提出这个公式完全是受了这本书的启发。因此,事实上索普是完全有这个资格拿诺贝尔奖的。
将部分资产交给巴菲特打理
因为期权公式的提出,索普在权证上赚钱就没那么轻松了。之后他又转换思想,开始研究和设计了新的策略,具体说就是在标普500指数和500只股票两者之间做套利。例如:标普500指数的价格比那500只股票的价格加在一起之后有偏离,那就说明可以进行套利,这也就是后期量化投资未定型前最初的形式。
索普不仅设计了这一种策略,就连现在市场上主流的交易策略,多数都是他设计的。但是大部分的人对索普这个名字还是陌生的,但是这不能掩盖他是“量化之父”的事实。就像目前活动在华尔街上的人,基本上都是索普的“后人”,大部分都是得到了他的真传。
随后的时间里,索普会见了巴菲特,两个人一起打桥牌或者在一起聊投资。和巴菲特见面之后,回到家了,索普对他的夫人说:“他见过的最聪敏的人就是巴菲特,在未来,他一定会成为美国最富有的人。”后来听说,索普把自己赚来的钱,拿出来一部分交给了巴菲特管理。
在美国,庞氏骗局霸道横行的时候,索普用他的经验发觉数据的异常,马上抽回了资金,能够全身而退的投资人寥寥无几,索普就成为了那难得的几个人之一。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29