
量化投资在中国可行么
本街详细介绍了量化投资的致命缺点,在分析了中国股市特点的基础上,阐述了量化投资在中国操作方法,建立了量化投资在中国可行性分析的基础。读完本文需要3分钟。敬请关注本头条号“安兴财经”及时获得更多精彩内容。
当我们发现量化投资是我们终于炼好、求到的投资仙丹,赚多赔少,我们都应该将钱用这种方法来管理。且慢!量化基金的掌门人Simons在五、六年前新开了两档基金,使用跟著名的大奖章类似的投资策略,但是投资的频率相对稍微慢一些。两档基金过去几年的表现都差强人意,很多慕名而来的投资者赔钱后退出,现在基金里面的钱据估计大部分都是西蒙斯自己的投资。而回报令人垂涎欲滴的大奖章基金则在2005年就已经完全退还了外界投资人的所有投资,只管理西蒙斯本人和其员工的投资,因为大奖章的五十亿美元资产“已经达到了流动性的上限”——量化投资的一个很致命的弱点是它的容量是有限度的。当我们管理的资金足以撬动市场,能为风向标时我们就失去了我们超额的收益[2]。犹如任何一种制度都会有利的一面和令人无奈的一面。模型也是一样的,任凭量化基金销售人员如何的吹虚自己的基金如何如何的好,以至于可以回避各种各样的风险。而我们的心里要清楚,公式不是万能的。我们可以通过一个简单的例子来证明这一点。
假设已有一个简单的条件模型F1(x)(模型买入和卖出条件众多这里为了说明假设只考虑单一条件下的卖买)其中VOL是交易量。我们可以看出当模型决定买入,并且假定买入量在5,000手左右,那留给模型判断卖出的VOL仅为5,000。假设另有一个定性投资基金正在建筹,其建仓数也为5,000。那正好到达了模型F1(x)的卖出条件。于是模型选择卖出——股价很可能并没有上升多少,反而因为大量的抛售而降低。如此我们可以很清楚的发现模型的决策是依赖数据的,而一个模型本身在实际操作中又同时在创造数据。这样的关系是会影响机器做出正确判断。
寻找“大概率”一直是量化投资在做的事。而概率的产生也同时和历史数据有关。就好比我们希望在投100次硬币时得到的结果是正面向上的概率是49%~51%。而你会发现当你做100次上述实验(也就是说投了10,000硬币)你想要的结果仅仅只有可怜的24%(通常是这个概率)。换句话说。量化投资的成功与否是建立在一个庞大的有效的数据库中。
但是我相信在A股市场未来量化投资将是大趋势,因为过去市场上几百只股票,人们有精力去研究每只股票,但是到股票数量接近2000只,市场的有效程度越来越高以后,依靠挖掘股票获取超额收益的难度越来越高,这正是为量化投资建造了一个庞大的舞台。在中国没和实现T+0的交易制度之前,我们仅能改成极致的量化投资理念和逻辑,用一种有中国特点的量化投资方法去管理我们的资金,这不能像国外依靠单纯的数学模型,也不是寻找单纯的数学规律,是把各种逻辑通过数量化的方式表达,其中必须包含各种经济、政治含义,这样得到的投资结果才有真实意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08