京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python松散正则表达式用法分析
本文实例讲述了Python松散正则表达式用法。分享给大家供大家参考,具体如下:
Python 允许用户利用所谓的 松散正则表达式来完成这个任务。一个松散正则表达式和一个紧凑正则表达式主要区别表现在两个方面:
1. 忽略空白符。空格符,制表符,回车符不匹配它们自身,他们根本不参与匹配。(如果你想在松散正则表达式中匹配一个空格符,你必须在它前面添加一个反斜线符号对他进行转义)
2. 忽略注释。在松散正则表达式中的注释和在普通Python代码中的一样:开始于一个#符号,结束于行尾。这种情况下,采用在一个多行字符串中注释,而不是在源代码中注释,他们以相同的方式工作。
下面是一个松散正则表达式的例子,直观地看,正则表达式模式被分成好几行来写了,我们可以为每行配上我们的注释。这样在过段时间后回头过来看我们可以很快地知道这个正则表达式的作用,增强代码的可读性。
>>> import re
>>> pattern = """
^ # beginning of string
M{0,4} # thousands - 0 to 4 M's
(CM|CD|D?C{0,3}) # hundreds - 900 (CM), 400 (CD), 0-300 (0 to 3 C's),
# or 500-800 (D, followed by 0 to 3 C's)
(XC|XL|L?X{0,3}) # tens - 90 (XC), 40 (XL), 0-30 (0 to 3 X's),
# or 50-80 (L, followed by 0 to 3 X's)
(IX|IV|V?I{0,3}) # ones - 9 (IX), 4 (IV), 0-3 (0 to 3 I's),
# or 5-8 (V, followed by 0 to 3 I's)
$ # end of string
"""
>>> re.search(pattern, 'M', re.VERBOSE)
<_sre.SRE_Match object at 0x01401570>
>>> re.search(pattern, 'MCMLXXXIX', re.VERBOSE)
<_sre.SRE_Match object at 0x014015C0>
>>> re.search(pattern, 'M')
>>>
使用松散正则表达式时必须传递另外一个参数re.VERBOSE,该参数是定义在re 模块中的一个常量,标志着待匹配的正则表达式是一个松散正则表达式。Python 不能自动检测一个正则表达式是为松散类型还是紧凑类型,所以必须显式的标明一个正则表达式为松散类型。所以
re.search(pattern, 'M', re.VERBOSE)#松散正则表达式
跟:
re.search(pattern, 'M'))#默认为“紧凑”正则表达式
得到的结果就不一样了。
下面是很常见的一些正则表达式:
^ 匹配字符串的开始。
$ 匹配字符串的结尾。
\b 匹配一个单词的边界。
\d 匹配任意数字。
\D 匹配任意非数字字符。
x? 匹配一个可选的x字符(换句话说,它匹配1次或者0次x 字符)。
x* 匹配0次或者多次x字符。
x+匹配1次或者多次x字符。
x{n,m} 匹配x字符,至少n次,至多m次。
(a|b|c)要么匹配a,要么匹配b,要么匹配c。
(x) 一般情况下表示一个记忆组(remembered group). 我们可以利用re.search函数返回对象的groups()函数获取它的值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15