京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python松散正则表达式用法分析
本文实例讲述了Python松散正则表达式用法。分享给大家供大家参考,具体如下:
Python 允许用户利用所谓的 松散正则表达式来完成这个任务。一个松散正则表达式和一个紧凑正则表达式主要区别表现在两个方面:
1. 忽略空白符。空格符,制表符,回车符不匹配它们自身,他们根本不参与匹配。(如果你想在松散正则表达式中匹配一个空格符,你必须在它前面添加一个反斜线符号对他进行转义)
2. 忽略注释。在松散正则表达式中的注释和在普通Python代码中的一样:开始于一个#符号,结束于行尾。这种情况下,采用在一个多行字符串中注释,而不是在源代码中注释,他们以相同的方式工作。
下面是一个松散正则表达式的例子,直观地看,正则表达式模式被分成好几行来写了,我们可以为每行配上我们的注释。这样在过段时间后回头过来看我们可以很快地知道这个正则表达式的作用,增强代码的可读性。
>>> import re
>>> pattern = """
^ # beginning of string
M{0,4} # thousands - 0 to 4 M's
(CM|CD|D?C{0,3}) # hundreds - 900 (CM), 400 (CD), 0-300 (0 to 3 C's),
# or 500-800 (D, followed by 0 to 3 C's)
(XC|XL|L?X{0,3}) # tens - 90 (XC), 40 (XL), 0-30 (0 to 3 X's),
# or 50-80 (L, followed by 0 to 3 X's)
(IX|IV|V?I{0,3}) # ones - 9 (IX), 4 (IV), 0-3 (0 to 3 I's),
# or 5-8 (V, followed by 0 to 3 I's)
$ # end of string
"""
>>> re.search(pattern, 'M', re.VERBOSE)
<_sre.SRE_Match object at 0x01401570>
>>> re.search(pattern, 'MCMLXXXIX', re.VERBOSE)
<_sre.SRE_Match object at 0x014015C0>
>>> re.search(pattern, 'M')
>>>
使用松散正则表达式时必须传递另外一个参数re.VERBOSE,该参数是定义在re 模块中的一个常量,标志着待匹配的正则表达式是一个松散正则表达式。Python 不能自动检测一个正则表达式是为松散类型还是紧凑类型,所以必须显式的标明一个正则表达式为松散类型。所以
re.search(pattern, 'M', re.VERBOSE)#松散正则表达式
跟:
re.search(pattern, 'M'))#默认为“紧凑”正则表达式
得到的结果就不一样了。
下面是很常见的一些正则表达式:
^ 匹配字符串的开始。
$ 匹配字符串的结尾。
\b 匹配一个单词的边界。
\d 匹配任意数字。
\D 匹配任意非数字字符。
x? 匹配一个可选的x字符(换句话说,它匹配1次或者0次x 字符)。
x* 匹配0次或者多次x字符。
x+匹配1次或者多次x字符。
x{n,m} 匹配x字符,至少n次,至多m次。
(a|b|c)要么匹配a,要么匹配b,要么匹配c。
(x) 一般情况下表示一个记忆组(remembered group). 我们可以利用re.search函数返回对象的groups()函数获取它的值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27