
如何在R语言中读取数据
读取数据有以下几种方式:
1.最常用的是采用读取表格数据的函数 read.table()以及read.csv().。这些函数读取一种以行列的格式存储数据的文本文件,然后在R中返回一个数据框。
2.readLines()用于逐行读取文本文件,实际上可以是任何格式的文件,在R中返回一个字符向量。
3.source()是读取R的重要函数,如果你有R代码例如函数或者其他东西写成的文件,都可以用source()将其中的代码读入R中。
4.dget()也可以用来读取R代码文件, 但它读取的是逆句法分析过后以文本文件储存的 R 对象 。
5.load()和unserialize()用于把二进制对象读入R
写入数据有以下几种方式,它们与读取数据一一对应:
1.read.table()是最常用的读入数据的函数,我们有必要了解它的参数是什么以及它们的意义:
第一个参数file,很明显是文件或者链接的名称,通常你提供的文件名都应当是字符串 ,它是你电脑上一个特定文件的路径。
第二个参数header是一个逻辑标志,表明第一行是否是表头 比如 第一行写了所有的变量名 那么这并不是实际数据的一部分 只是提供了标记的行 你要告诉 read.table 函数 第一行是否包含变量名 还是直接就是数据
第三个 参数是sep,表示分隔符 ,它是一个字符串 用于标示每一列是如何分隔的 假如你有一个文件用逗号分隔 那么分隔符就是逗号 有的时候会碰到分隔符是冒号、制表符或者空格的文件 这时候你就要告诉 read.table 函数分隔符是什么了
第四个参数是colClasses ,应当是一个字符向量 其长度应当与数据集的列数相等 这个字符向量表示 数据集中每一列数据的类 这么说吧 第一列数据是数值型的 第二列数据是逻辑型 第三列数据是因子 诸如此类 colClass 不是一个必须的向量 但它会告诉 read.table() 每一列数据的类型 。
第五个参数是nRows,它 是数据集中数据的行数 虽然不是必须的但有时也会用到。
第六个参数是comment.char,它 是字符串 表明文件中用于注释的字符 默认通常是井号 所有在注释符号后面的字符都会被忽略。
第七个参数是skip ,它指定了从文件开头往下忽略多少行 有的时候文件开头可能有一些头信息或者非数据区域 你想要跳过那些部分 所以你可以告诉 read.table 函数去跳过比如开头的 10 行或者是 100 行 然后从那里再开始读取数据
最后一个参数是stringAsFactors,默认为 TRUE 它的作用是 通过它可以选择是否把字符变量编码成因子 所以这是默认操作 每次 read.table() 遇到一列看起来像字符变量的数据 它就会假设你希望读入的 是一个因子变量 如果你不想把这一列设成因子变量 那么你可以把 stringAsFactors 设置为 FALSE
当你在使用的时候,你可以直接传入文件名,它会自动调配好剩下的部分。
read.table() 是等价的 除了 read.csv() 的默认分隔符是逗号 而 read.table() 的默认分隔符是空格外。 另外 read.csv() 会默认把 header 参数设置为 TRUE
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29