京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何在R语言中读取数据
读取数据有以下几种方式:
1.最常用的是采用读取表格数据的函数 read.table()以及read.csv().。这些函数读取一种以行列的格式存储数据的文本文件,然后在R中返回一个数据框。
2.readLines()用于逐行读取文本文件,实际上可以是任何格式的文件,在R中返回一个字符向量。
3.source()是读取R的重要函数,如果你有R代码例如函数或者其他东西写成的文件,都可以用source()将其中的代码读入R中。
4.dget()也可以用来读取R代码文件, 但它读取的是逆句法分析过后以文本文件储存的 R 对象 。
5.load()和unserialize()用于把二进制对象读入R
写入数据有以下几种方式,它们与读取数据一一对应:
1.read.table()是最常用的读入数据的函数,我们有必要了解它的参数是什么以及它们的意义:
第一个参数file,很明显是文件或者链接的名称,通常你提供的文件名都应当是字符串 ,它是你电脑上一个特定文件的路径。
第二个参数header是一个逻辑标志,表明第一行是否是表头 比如 第一行写了所有的变量名 那么这并不是实际数据的一部分 只是提供了标记的行 你要告诉 read.table 函数 第一行是否包含变量名 还是直接就是数据
第三个 参数是sep,表示分隔符 ,它是一个字符串 用于标示每一列是如何分隔的 假如你有一个文件用逗号分隔 那么分隔符就是逗号 有的时候会碰到分隔符是冒号、制表符或者空格的文件 这时候你就要告诉 read.table 函数分隔符是什么了
第四个参数是colClasses ,应当是一个字符向量 其长度应当与数据集的列数相等 这个字符向量表示 数据集中每一列数据的类 这么说吧 第一列数据是数值型的 第二列数据是逻辑型 第三列数据是因子 诸如此类 colClass 不是一个必须的向量 但它会告诉 read.table() 每一列数据的类型 。
第五个参数是nRows,它 是数据集中数据的行数 虽然不是必须的但有时也会用到。
第六个参数是comment.char,它 是字符串 表明文件中用于注释的字符 默认通常是井号 所有在注释符号后面的字符都会被忽略。
第七个参数是skip ,它指定了从文件开头往下忽略多少行 有的时候文件开头可能有一些头信息或者非数据区域 你想要跳过那些部分 所以你可以告诉 read.table 函数去跳过比如开头的 10 行或者是 100 行 然后从那里再开始读取数据
最后一个参数是stringAsFactors,默认为 TRUE 它的作用是 通过它可以选择是否把字符变量编码成因子 所以这是默认操作 每次 read.table() 遇到一列看起来像字符变量的数据 它就会假设你希望读入的 是一个因子变量 如果你不想把这一列设成因子变量 那么你可以把 stringAsFactors 设置为 FALSE
当你在使用的时候,你可以直接传入文件名,它会自动调配好剩下的部分。
read.table() 是等价的 除了 read.csv() 的默认分隔符是逗号 而 read.table() 的默认分隔符是空格外。 另外 read.csv() 会默认把 header 参数设置为 TRUE
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27