
量化投资的问题
最近认识了一些做投资的朋友,他们有做股权投资的,也有做股票投资的,与他们聊天之时不约而同都提到“量化投资”的问题。
从经济学理论的角度来看,“量化投资”在本质上与“图表派”并无区别,只不过后者是用人的眼睛去数波浪,前者是用电脑程序。它们的本质都是“用过去推测未来”,并不管决定过去的股价轨迹的因素(局限条件)是什么,只管用图表或数学模型生硬地直推未来的股价轨迹,等于是假设决定未来的股价轨迹的因素与过去一样,没有变化。这跟有人把过去发生不幸事件的日期输入某个电脑程序,调整程序到拟合出来的模型与这些日期吻合之后,就生硬地往未来推算,从而“预测”未来哪些日期会发生不幸事件,是如出一辙的逻辑。显然,这是非常典型的伪科学。
然而,先不论量化投资,只说图表派本身,在金融投资中一直顽强地存在着,为什么它能“适者生存”呢?我的理解是,运用真正的经济学理论,在探查决定股价变动的局限条件的基础上进行符合科学要求的推断,这是巴菲特的“价值投资”的本质,而这样做有很高的进入门槛(包括对经济学理论的掌握,以及调查并找到关键的局限条件的能力),一般的投资者做不到。图表派却只需看看图表,再加上猜测就能做出决策,这类似于“以价定质”的行为,关于价格的信息比关于质量的信息更容易获取,虽然前者有出错的风险,但总好过后者的信息费用高到无法做出决策。这是其一。其二,在一段时间内,关键的局限条件大致稳定,则即使并不知道它们具体是什么(如前所述,掌握它们的信息费用对一般投资者而言太高),但假设它们没变化是符合事实的,则对股价变动的猜测就有一定的机率是命中的。其三,仅以图表派而论,这类投资者在做决策时,其实并不是纯粹的图表派。这是什么意思呢?投资者毕竟是人,而不是僵化地按着图表做决策的机器,他们只是对经济学理论、关键局限的掌握能力比巴菲特为代表的价值投资者要差,于是对图表的依赖程度较高,但作为人他们多少还是懂点基本的逻辑(虽然他们不知道那是经济学)与事实(关键的局限)的。所以,在人做决策的投资中,其实没有真正纯粹的图表派,即没有人会完全地只依赖图表。但说到量化投资,因为它是由电脑程序来做决策,它没有第三点,它完全地依赖从一开始就确定下来的数学模型,不会在决策中夹杂任何逻辑与事实的成分,是真正纯粹的图表派。
我一直关注量化投资,是基于两个原因。原因之一,是目前所谓主流的经济学理论,充斥着大量复杂数学的高级理论,基本破产。无论小圈子里多么的自娱自乐,但宏观方面对政府的经济决策祸害多于帮忙,微观方面对企业的经营决策亦然(马云对经济学家的嗤之以鼻是典型),尤其是脱离尽管问题重重、但毕竟还是保有着真知灼见的底子的微观传统跑到博弈论那里去,看不出有任何真正触及现实的应用(即使在博弈论最早诞生的领域军事方面也完全看不到哪里有什么普遍应用)。但有一个领域仍然有力地支撑着满是数学的所谓主流经济学,那就是金融学,其实只是量化投资。因为它看起来收益率相当不错,能真的帮人赚钱,而有什么比赚钱是更实在的应用呢?——虽然这话说出来很俗,而撇开无意义的道德审判不论,金融市场上投资赚钱也不等同于宏观的政府政策协助国民财富增长与微观的企业通过经营赚钱,但毕竟在这狭隘的领域中,充斥着复杂数学的经济学看起来还是有实用性的。
原因之二,从真正的经济学来看,如前所述,量化投资即使成功也根本不是经济学理论的成功,而只是数学的成功而已。甚至,量化投资的成功不仅不能证明经济学的成功,反而是证明经济学的失败。因为它似乎违反了“零利润定理”。巴菲特的“价值投资”理念没有违反这一定理,他那长期高企的收益率来自他的信息租值,而且是需要学习掌握的知识,而不是告诉就能知道的普通信息,即其信息租值的进入门槛是学习能力(包括运用能力)。但量化投资的进入门槛是什么呢?这是我一直在问的问题。没有进入门槛,就没有垄断租值(所谓的超额利润)。有门槛,零利润定理才没被违反;没门槛,一直高企的利润就冲击到经济学了。
量化投资的数学模型是数学家做的,不是经济学家做的,所以再成功也与经济学无关。但先别管这是经济学还是数学的功劳,上述这句话转为用经济学术语来描述的话,是说量化投资的进入门槛在于数学模型。既然如此,为什么要开投资公司呢?开软件公司就可以了呀。
最近认识的那些做投资的朋友给我解了惑。他们说,那些数学模型都只在一段时间内有效,时间一长就会失效。比如一段时间小盘股表现好,就做小盘股的投资模型。但当小盘股的风潮过去,又要重新再开发新的投资模型。投资模型只能一段时间有效,这一点用前面关于图表派本质的分析就能轻易地理解。图表派也好,量化投资也好,本质上是“用过去推测未来”,基于假设过去的关键局限在未来仍然不变。一段时间内这假设是成立的,但时间一长,关键局限不可能一直不变,假设失效,基于假设所做的推测当然跟着失效。这带来了量化投资的第一个问题:时间是消散租值,而不是积累租值。租值不能积累,上头成本就不能持续地变厚,短命的成功还能算是成功吗?任何成功的企业追求的都是建立品牌,用品牌积累其租值,增加上头成本来保护它应付随着时间越来越长而更多机会遇到不利冲击时也能熬过难关,继续生存下去。在企业界成立的逻辑,难道在投资界就不成立了吗?
其次,那些做投资的朋友说,量化投资的高收益率是存在着猫腻的。它所操控的资金规模不能太大,顶多1亿。但一般稍有规模的投资规模都有100亿,量化投资的体量在投资界里简直就是沧海一粟。事实上,它必须是大海里的一滴水,这样才能不影响大盘,否则其数学模型的前提假设又得不到满足了。
这又带来量化投资的另外两个问题:问题之二是在量化投资中赚了的钱会返还给投资者,而不是作为追加本金继续投资。在这个意义上说,量化投资的收益率其实是单利,而不是复利!单利从数字上看起来当然比复利高很多,这就是量化投资看起来收益率高的猫腻。问题之三是即使收益率是复利,不存在偷换概念成单利的问题,但由于其资金规模小,其实与资金规模大、收益率较低的投资方式比并不划算。打个比方会比较好理解。这就如餐馆业中的蔬菜与鲍鱼之别。蔬菜的毛利率是很高的,从市场上买回来可能是1元一斤的成本,摆上桌却加价到几元一盘(用菜量不到一斤),价格翻了10倍。而鲍鱼的毛利率相比之下要低得多,价格可能还翻不了1倍。但显然没有餐馆会只从毛利率高低的角度来考虑,一味只卖毛利率最高的蔬菜。事实上,越是高档的餐馆,蔬菜越是陪衬,真正赖以赚钱的是鲍鱼。因为蔬菜的单价不高,毛利率再高,收入也很有限。量化投资的情况就类似于蔬菜,其资金规模小类似于蔬菜的单价低,收益率再高,收入也有限得很。
综上所述,量化投资只能操控小规模的资金,有效的时间又持续不长,却要养着一个至少是数学能力很强的人才所组成的开发团队,把这成本算进来之后,其实利润率并不见得比别的投资方式更高,也就是从机会成本而言它并无超额利润。所以,结论是:量化投资没能突破“零利润定理”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30